| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simpr |  |-  ( ( ( G e. W /\ ( Vtx ` G ) = (/) ) /\ k e. NN0* ) -> k e. NN0* ) | 
						
							| 2 |  | rzal |  |-  ( ( Vtx ` G ) = (/) -> A. v e. ( Vtx ` G ) ( ( VtxDeg ` G ) ` v ) = k ) | 
						
							| 3 | 2 | ad2antlr |  |-  ( ( ( G e. W /\ ( Vtx ` G ) = (/) ) /\ k e. NN0* ) -> A. v e. ( Vtx ` G ) ( ( VtxDeg ` G ) ` v ) = k ) | 
						
							| 4 |  | eqid |  |-  ( Vtx ` G ) = ( Vtx ` G ) | 
						
							| 5 |  | eqid |  |-  ( VtxDeg ` G ) = ( VtxDeg ` G ) | 
						
							| 6 | 4 5 | isrgr |  |-  ( ( G e. W /\ k e. NN0* ) -> ( G RegGraph k <-> ( k e. NN0* /\ A. v e. ( Vtx ` G ) ( ( VtxDeg ` G ) ` v ) = k ) ) ) | 
						
							| 7 | 6 | adantlr |  |-  ( ( ( G e. W /\ ( Vtx ` G ) = (/) ) /\ k e. NN0* ) -> ( G RegGraph k <-> ( k e. NN0* /\ A. v e. ( Vtx ` G ) ( ( VtxDeg ` G ) ` v ) = k ) ) ) | 
						
							| 8 | 1 3 7 | mpbir2and |  |-  ( ( ( G e. W /\ ( Vtx ` G ) = (/) ) /\ k e. NN0* ) -> G RegGraph k ) | 
						
							| 9 | 8 | ralrimiva |  |-  ( ( G e. W /\ ( Vtx ` G ) = (/) ) -> A. k e. NN0* G RegGraph k ) |