| Step | Hyp | Ref | Expression | 
						
							| 1 |  | usgr0v |  |-  ( ( G e. W /\ ( Vtx ` G ) = (/) /\ ( iEdg ` G ) = (/) ) -> G e. USGraph ) | 
						
							| 2 | 1 | adantr |  |-  ( ( ( G e. W /\ ( Vtx ` G ) = (/) /\ ( iEdg ` G ) = (/) ) /\ k e. NN0* ) -> G e. USGraph ) | 
						
							| 3 |  | 0vtxrgr |  |-  ( ( G e. W /\ ( Vtx ` G ) = (/) ) -> A. v e. NN0* G RegGraph v ) | 
						
							| 4 |  | breq2 |  |-  ( v = k -> ( G RegGraph v <-> G RegGraph k ) ) | 
						
							| 5 | 4 | rspccv |  |-  ( A. v e. NN0* G RegGraph v -> ( k e. NN0* -> G RegGraph k ) ) | 
						
							| 6 | 3 5 | syl |  |-  ( ( G e. W /\ ( Vtx ` G ) = (/) ) -> ( k e. NN0* -> G RegGraph k ) ) | 
						
							| 7 | 6 | 3adant3 |  |-  ( ( G e. W /\ ( Vtx ` G ) = (/) /\ ( iEdg ` G ) = (/) ) -> ( k e. NN0* -> G RegGraph k ) ) | 
						
							| 8 | 7 | imp |  |-  ( ( ( G e. W /\ ( Vtx ` G ) = (/) /\ ( iEdg ` G ) = (/) ) /\ k e. NN0* ) -> G RegGraph k ) | 
						
							| 9 |  | isrusgr |  |-  ( ( G e. W /\ k e. NN0* ) -> ( G RegUSGraph k <-> ( G e. USGraph /\ G RegGraph k ) ) ) | 
						
							| 10 | 9 | 3ad2antl1 |  |-  ( ( ( G e. W /\ ( Vtx ` G ) = (/) /\ ( iEdg ` G ) = (/) ) /\ k e. NN0* ) -> ( G RegUSGraph k <-> ( G e. USGraph /\ G RegGraph k ) ) ) | 
						
							| 11 | 2 8 10 | mpbir2and |  |-  ( ( ( G e. W /\ ( Vtx ` G ) = (/) /\ ( iEdg ` G ) = (/) ) /\ k e. NN0* ) -> G RegUSGraph k ) | 
						
							| 12 | 11 | ralrimiva |  |-  ( ( G e. W /\ ( Vtx ` G ) = (/) /\ ( iEdg ` G ) = (/) ) -> A. k e. NN0* G RegUSGraph k ) |