| Step |
Hyp |
Ref |
Expression |
| 1 |
|
usgr0v |
|- ( ( G e. W /\ ( Vtx ` G ) = (/) /\ ( iEdg ` G ) = (/) ) -> G e. USGraph ) |
| 2 |
1
|
adantr |
|- ( ( ( G e. W /\ ( Vtx ` G ) = (/) /\ ( iEdg ` G ) = (/) ) /\ k e. NN0* ) -> G e. USGraph ) |
| 3 |
|
0vtxrgr |
|- ( ( G e. W /\ ( Vtx ` G ) = (/) ) -> A. v e. NN0* G RegGraph v ) |
| 4 |
|
breq2 |
|- ( v = k -> ( G RegGraph v <-> G RegGraph k ) ) |
| 5 |
4
|
rspccv |
|- ( A. v e. NN0* G RegGraph v -> ( k e. NN0* -> G RegGraph k ) ) |
| 6 |
3 5
|
syl |
|- ( ( G e. W /\ ( Vtx ` G ) = (/) ) -> ( k e. NN0* -> G RegGraph k ) ) |
| 7 |
6
|
3adant3 |
|- ( ( G e. W /\ ( Vtx ` G ) = (/) /\ ( iEdg ` G ) = (/) ) -> ( k e. NN0* -> G RegGraph k ) ) |
| 8 |
7
|
imp |
|- ( ( ( G e. W /\ ( Vtx ` G ) = (/) /\ ( iEdg ` G ) = (/) ) /\ k e. NN0* ) -> G RegGraph k ) |
| 9 |
|
isrusgr |
|- ( ( G e. W /\ k e. NN0* ) -> ( G RegUSGraph k <-> ( G e. USGraph /\ G RegGraph k ) ) ) |
| 10 |
9
|
3ad2antl1 |
|- ( ( ( G e. W /\ ( Vtx ` G ) = (/) /\ ( iEdg ` G ) = (/) ) /\ k e. NN0* ) -> ( G RegUSGraph k <-> ( G e. USGraph /\ G RegGraph k ) ) ) |
| 11 |
2 8 10
|
mpbir2and |
|- ( ( ( G e. W /\ ( Vtx ` G ) = (/) /\ ( iEdg ` G ) = (/) ) /\ k e. NN0* ) -> G RegUSGraph k ) |
| 12 |
11
|
ralrimiva |
|- ( ( G e. W /\ ( Vtx ` G ) = (/) /\ ( iEdg ` G ) = (/) ) -> A. k e. NN0* G RegUSGraph k ) |