| Step |
Hyp |
Ref |
Expression |
| 1 |
|
uhgr0vb |
|- ( ( G e. UHGraph /\ ( Vtx ` G ) = (/) ) -> ( G e. UHGraph <-> ( iEdg ` G ) = (/) ) ) |
| 2 |
1
|
biimpd |
|- ( ( G e. UHGraph /\ ( Vtx ` G ) = (/) ) -> ( G e. UHGraph -> ( iEdg ` G ) = (/) ) ) |
| 3 |
2
|
ex |
|- ( G e. UHGraph -> ( ( Vtx ` G ) = (/) -> ( G e. UHGraph -> ( iEdg ` G ) = (/) ) ) ) |
| 4 |
3
|
pm2.43a |
|- ( G e. UHGraph -> ( ( Vtx ` G ) = (/) -> ( iEdg ` G ) = (/) ) ) |
| 5 |
4
|
imp |
|- ( ( G e. UHGraph /\ ( Vtx ` G ) = (/) ) -> ( iEdg ` G ) = (/) ) |
| 6 |
|
0vtxrusgr |
|- ( ( G e. UHGraph /\ ( Vtx ` G ) = (/) /\ ( iEdg ` G ) = (/) ) -> A. k e. NN0* G RegUSGraph k ) |
| 7 |
5 6
|
mpd3an3 |
|- ( ( G e. UHGraph /\ ( Vtx ` G ) = (/) ) -> A. k e. NN0* G RegUSGraph k ) |