Metamath Proof Explorer


Theorem 0vtxrusgr

Description: A graph with no vertices and an empty edge function is a k-regular simple graph for every k. (Contributed by Alexander van der Vekens, 10-Jul-2018) (Revised by AV, 26-Dec-2020)

Ref Expression
Assertion 0vtxrusgr ( ( 𝐺𝑊 ∧ ( Vtx ‘ 𝐺 ) = ∅ ∧ ( iEdg ‘ 𝐺 ) = ∅ ) → ∀ 𝑘 ∈ ℕ0* 𝐺 RegUSGraph 𝑘 )

Proof

Step Hyp Ref Expression
1 usgr0v ( ( 𝐺𝑊 ∧ ( Vtx ‘ 𝐺 ) = ∅ ∧ ( iEdg ‘ 𝐺 ) = ∅ ) → 𝐺 ∈ USGraph )
2 1 adantr ( ( ( 𝐺𝑊 ∧ ( Vtx ‘ 𝐺 ) = ∅ ∧ ( iEdg ‘ 𝐺 ) = ∅ ) ∧ 𝑘 ∈ ℕ0* ) → 𝐺 ∈ USGraph )
3 0vtxrgr ( ( 𝐺𝑊 ∧ ( Vtx ‘ 𝐺 ) = ∅ ) → ∀ 𝑣 ∈ ℕ0* 𝐺 RegGraph 𝑣 )
4 breq2 ( 𝑣 = 𝑘 → ( 𝐺 RegGraph 𝑣𝐺 RegGraph 𝑘 ) )
5 4 rspccv ( ∀ 𝑣 ∈ ℕ0* 𝐺 RegGraph 𝑣 → ( 𝑘 ∈ ℕ0*𝐺 RegGraph 𝑘 ) )
6 3 5 syl ( ( 𝐺𝑊 ∧ ( Vtx ‘ 𝐺 ) = ∅ ) → ( 𝑘 ∈ ℕ0*𝐺 RegGraph 𝑘 ) )
7 6 3adant3 ( ( 𝐺𝑊 ∧ ( Vtx ‘ 𝐺 ) = ∅ ∧ ( iEdg ‘ 𝐺 ) = ∅ ) → ( 𝑘 ∈ ℕ0*𝐺 RegGraph 𝑘 ) )
8 7 imp ( ( ( 𝐺𝑊 ∧ ( Vtx ‘ 𝐺 ) = ∅ ∧ ( iEdg ‘ 𝐺 ) = ∅ ) ∧ 𝑘 ∈ ℕ0* ) → 𝐺 RegGraph 𝑘 )
9 isrusgr ( ( 𝐺𝑊𝑘 ∈ ℕ0* ) → ( 𝐺 RegUSGraph 𝑘 ↔ ( 𝐺 ∈ USGraph ∧ 𝐺 RegGraph 𝑘 ) ) )
10 9 3ad2antl1 ( ( ( 𝐺𝑊 ∧ ( Vtx ‘ 𝐺 ) = ∅ ∧ ( iEdg ‘ 𝐺 ) = ∅ ) ∧ 𝑘 ∈ ℕ0* ) → ( 𝐺 RegUSGraph 𝑘 ↔ ( 𝐺 ∈ USGraph ∧ 𝐺 RegGraph 𝑘 ) ) )
11 2 8 10 mpbir2and ( ( ( 𝐺𝑊 ∧ ( Vtx ‘ 𝐺 ) = ∅ ∧ ( iEdg ‘ 𝐺 ) = ∅ ) ∧ 𝑘 ∈ ℕ0* ) → 𝐺 RegUSGraph 𝑘 )
12 11 ralrimiva ( ( 𝐺𝑊 ∧ ( Vtx ‘ 𝐺 ) = ∅ ∧ ( iEdg ‘ 𝐺 ) = ∅ ) → ∀ 𝑘 ∈ ℕ0* 𝐺 RegUSGraph 𝑘 )