| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simpr | ⊢ ( ( ( 𝐺  ∈  𝑊  ∧  ( Vtx ‘ 𝐺 )  =  ∅ )  ∧  𝑘  ∈  ℕ0* )  →  𝑘  ∈  ℕ0* ) | 
						
							| 2 |  | rzal | ⊢ ( ( Vtx ‘ 𝐺 )  =  ∅  →  ∀ 𝑣  ∈  ( Vtx ‘ 𝐺 ) ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  =  𝑘 ) | 
						
							| 3 | 2 | ad2antlr | ⊢ ( ( ( 𝐺  ∈  𝑊  ∧  ( Vtx ‘ 𝐺 )  =  ∅ )  ∧  𝑘  ∈  ℕ0* )  →  ∀ 𝑣  ∈  ( Vtx ‘ 𝐺 ) ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  =  𝑘 ) | 
						
							| 4 |  | eqid | ⊢ ( Vtx ‘ 𝐺 )  =  ( Vtx ‘ 𝐺 ) | 
						
							| 5 |  | eqid | ⊢ ( VtxDeg ‘ 𝐺 )  =  ( VtxDeg ‘ 𝐺 ) | 
						
							| 6 | 4 5 | isrgr | ⊢ ( ( 𝐺  ∈  𝑊  ∧  𝑘  ∈  ℕ0* )  →  ( 𝐺  RegGraph  𝑘  ↔  ( 𝑘  ∈  ℕ0*  ∧  ∀ 𝑣  ∈  ( Vtx ‘ 𝐺 ) ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  =  𝑘 ) ) ) | 
						
							| 7 | 6 | adantlr | ⊢ ( ( ( 𝐺  ∈  𝑊  ∧  ( Vtx ‘ 𝐺 )  =  ∅ )  ∧  𝑘  ∈  ℕ0* )  →  ( 𝐺  RegGraph  𝑘  ↔  ( 𝑘  ∈  ℕ0*  ∧  ∀ 𝑣  ∈  ( Vtx ‘ 𝐺 ) ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  =  𝑘 ) ) ) | 
						
							| 8 | 1 3 7 | mpbir2and | ⊢ ( ( ( 𝐺  ∈  𝑊  ∧  ( Vtx ‘ 𝐺 )  =  ∅ )  ∧  𝑘  ∈  ℕ0* )  →  𝐺  RegGraph  𝑘 ) | 
						
							| 9 | 8 | ralrimiva | ⊢ ( ( 𝐺  ∈  𝑊  ∧  ( Vtx ‘ 𝐺 )  =  ∅ )  →  ∀ 𝑘  ∈  ℕ0* 𝐺  RegGraph  𝑘 ) |