Step |
Hyp |
Ref |
Expression |
1 |
|
elopab |
⊢ ( 𝑝 ∈ { 〈 𝑣 , 𝑒 〉 ∣ 𝑒 : ∅ ⟶ ∅ } ↔ ∃ 𝑣 ∃ 𝑒 ( 𝑝 = 〈 𝑣 , 𝑒 〉 ∧ 𝑒 : ∅ ⟶ ∅ ) ) |
2 |
|
f0bi |
⊢ ( 𝑒 : ∅ ⟶ ∅ ↔ 𝑒 = ∅ ) |
3 |
|
opeq2 |
⊢ ( 𝑒 = ∅ → 〈 𝑣 , 𝑒 〉 = 〈 𝑣 , ∅ 〉 ) |
4 |
|
usgr0eop |
⊢ ( 𝑣 ∈ V → 〈 𝑣 , ∅ 〉 ∈ USGraph ) |
5 |
4
|
elv |
⊢ 〈 𝑣 , ∅ 〉 ∈ USGraph |
6 |
3 5
|
eqeltrdi |
⊢ ( 𝑒 = ∅ → 〈 𝑣 , 𝑒 〉 ∈ USGraph ) |
7 |
|
vex |
⊢ 𝑣 ∈ V |
8 |
|
vex |
⊢ 𝑒 ∈ V |
9 |
7 8
|
opiedgfvi |
⊢ ( iEdg ‘ 〈 𝑣 , 𝑒 〉 ) = 𝑒 |
10 |
|
id |
⊢ ( 𝑒 = ∅ → 𝑒 = ∅ ) |
11 |
9 10
|
syl5eq |
⊢ ( 𝑒 = ∅ → ( iEdg ‘ 〈 𝑣 , 𝑒 〉 ) = ∅ ) |
12 |
6 11
|
jca |
⊢ ( 𝑒 = ∅ → ( 〈 𝑣 , 𝑒 〉 ∈ USGraph ∧ ( iEdg ‘ 〈 𝑣 , 𝑒 〉 ) = ∅ ) ) |
13 |
2 12
|
sylbi |
⊢ ( 𝑒 : ∅ ⟶ ∅ → ( 〈 𝑣 , 𝑒 〉 ∈ USGraph ∧ ( iEdg ‘ 〈 𝑣 , 𝑒 〉 ) = ∅ ) ) |
14 |
13
|
adantl |
⊢ ( ( 𝑝 = 〈 𝑣 , 𝑒 〉 ∧ 𝑒 : ∅ ⟶ ∅ ) → ( 〈 𝑣 , 𝑒 〉 ∈ USGraph ∧ ( iEdg ‘ 〈 𝑣 , 𝑒 〉 ) = ∅ ) ) |
15 |
|
eleq1 |
⊢ ( 𝑝 = 〈 𝑣 , 𝑒 〉 → ( 𝑝 ∈ USGraph ↔ 〈 𝑣 , 𝑒 〉 ∈ USGraph ) ) |
16 |
|
fveqeq2 |
⊢ ( 𝑝 = 〈 𝑣 , 𝑒 〉 → ( ( iEdg ‘ 𝑝 ) = ∅ ↔ ( iEdg ‘ 〈 𝑣 , 𝑒 〉 ) = ∅ ) ) |
17 |
15 16
|
anbi12d |
⊢ ( 𝑝 = 〈 𝑣 , 𝑒 〉 → ( ( 𝑝 ∈ USGraph ∧ ( iEdg ‘ 𝑝 ) = ∅ ) ↔ ( 〈 𝑣 , 𝑒 〉 ∈ USGraph ∧ ( iEdg ‘ 〈 𝑣 , 𝑒 〉 ) = ∅ ) ) ) |
18 |
17
|
adantr |
⊢ ( ( 𝑝 = 〈 𝑣 , 𝑒 〉 ∧ 𝑒 : ∅ ⟶ ∅ ) → ( ( 𝑝 ∈ USGraph ∧ ( iEdg ‘ 𝑝 ) = ∅ ) ↔ ( 〈 𝑣 , 𝑒 〉 ∈ USGraph ∧ ( iEdg ‘ 〈 𝑣 , 𝑒 〉 ) = ∅ ) ) ) |
19 |
14 18
|
mpbird |
⊢ ( ( 𝑝 = 〈 𝑣 , 𝑒 〉 ∧ 𝑒 : ∅ ⟶ ∅ ) → ( 𝑝 ∈ USGraph ∧ ( iEdg ‘ 𝑝 ) = ∅ ) ) |
20 |
|
fveqeq2 |
⊢ ( 𝑔 = 𝑝 → ( ( iEdg ‘ 𝑔 ) = ∅ ↔ ( iEdg ‘ 𝑝 ) = ∅ ) ) |
21 |
20
|
elrab |
⊢ ( 𝑝 ∈ { 𝑔 ∈ USGraph ∣ ( iEdg ‘ 𝑔 ) = ∅ } ↔ ( 𝑝 ∈ USGraph ∧ ( iEdg ‘ 𝑝 ) = ∅ ) ) |
22 |
19 21
|
sylibr |
⊢ ( ( 𝑝 = 〈 𝑣 , 𝑒 〉 ∧ 𝑒 : ∅ ⟶ ∅ ) → 𝑝 ∈ { 𝑔 ∈ USGraph ∣ ( iEdg ‘ 𝑔 ) = ∅ } ) |
23 |
22
|
exlimivv |
⊢ ( ∃ 𝑣 ∃ 𝑒 ( 𝑝 = 〈 𝑣 , 𝑒 〉 ∧ 𝑒 : ∅ ⟶ ∅ ) → 𝑝 ∈ { 𝑔 ∈ USGraph ∣ ( iEdg ‘ 𝑔 ) = ∅ } ) |
24 |
1 23
|
sylbi |
⊢ ( 𝑝 ∈ { 〈 𝑣 , 𝑒 〉 ∣ 𝑒 : ∅ ⟶ ∅ } → 𝑝 ∈ { 𝑔 ∈ USGraph ∣ ( iEdg ‘ 𝑔 ) = ∅ } ) |
25 |
24
|
ssriv |
⊢ { 〈 𝑣 , 𝑒 〉 ∣ 𝑒 : ∅ ⟶ ∅ } ⊆ { 𝑔 ∈ USGraph ∣ ( iEdg ‘ 𝑔 ) = ∅ } |
26 |
|
eqid |
⊢ { 〈 𝑣 , 𝑒 〉 ∣ 𝑒 : ∅ ⟶ ∅ } = { 〈 𝑣 , 𝑒 〉 ∣ 𝑒 : ∅ ⟶ ∅ } |
27 |
26
|
griedg0prc |
⊢ { 〈 𝑣 , 𝑒 〉 ∣ 𝑒 : ∅ ⟶ ∅ } ∉ V |
28 |
|
prcssprc |
⊢ ( ( { 〈 𝑣 , 𝑒 〉 ∣ 𝑒 : ∅ ⟶ ∅ } ⊆ { 𝑔 ∈ USGraph ∣ ( iEdg ‘ 𝑔 ) = ∅ } ∧ { 〈 𝑣 , 𝑒 〉 ∣ 𝑒 : ∅ ⟶ ∅ } ∉ V ) → { 𝑔 ∈ USGraph ∣ ( iEdg ‘ 𝑔 ) = ∅ } ∉ V ) |
29 |
25 27 28
|
mp2an |
⊢ { 𝑔 ∈ USGraph ∣ ( iEdg ‘ 𝑔 ) = ∅ } ∉ V |
30 |
|
df-3an |
⊢ ( ( 𝑔 ∈ USGraph ∧ 0 ∈ ℕ0* ∧ ∀ 𝑣 ∈ ( Vtx ‘ 𝑔 ) ( ( VtxDeg ‘ 𝑔 ) ‘ 𝑣 ) = 0 ) ↔ ( ( 𝑔 ∈ USGraph ∧ 0 ∈ ℕ0* ) ∧ ∀ 𝑣 ∈ ( Vtx ‘ 𝑔 ) ( ( VtxDeg ‘ 𝑔 ) ‘ 𝑣 ) = 0 ) ) |
31 |
30
|
bicomi |
⊢ ( ( ( 𝑔 ∈ USGraph ∧ 0 ∈ ℕ0* ) ∧ ∀ 𝑣 ∈ ( Vtx ‘ 𝑔 ) ( ( VtxDeg ‘ 𝑔 ) ‘ 𝑣 ) = 0 ) ↔ ( 𝑔 ∈ USGraph ∧ 0 ∈ ℕ0* ∧ ∀ 𝑣 ∈ ( Vtx ‘ 𝑔 ) ( ( VtxDeg ‘ 𝑔 ) ‘ 𝑣 ) = 0 ) ) |
32 |
31
|
a1i |
⊢ ( 𝑔 ∈ USGraph → ( ( ( 𝑔 ∈ USGraph ∧ 0 ∈ ℕ0* ) ∧ ∀ 𝑣 ∈ ( Vtx ‘ 𝑔 ) ( ( VtxDeg ‘ 𝑔 ) ‘ 𝑣 ) = 0 ) ↔ ( 𝑔 ∈ USGraph ∧ 0 ∈ ℕ0* ∧ ∀ 𝑣 ∈ ( Vtx ‘ 𝑔 ) ( ( VtxDeg ‘ 𝑔 ) ‘ 𝑣 ) = 0 ) ) ) |
33 |
|
0xnn0 |
⊢ 0 ∈ ℕ0* |
34 |
|
ibar |
⊢ ( ( 𝑔 ∈ USGraph ∧ 0 ∈ ℕ0* ) → ( ∀ 𝑣 ∈ ( Vtx ‘ 𝑔 ) ( ( VtxDeg ‘ 𝑔 ) ‘ 𝑣 ) = 0 ↔ ( ( 𝑔 ∈ USGraph ∧ 0 ∈ ℕ0* ) ∧ ∀ 𝑣 ∈ ( Vtx ‘ 𝑔 ) ( ( VtxDeg ‘ 𝑔 ) ‘ 𝑣 ) = 0 ) ) ) |
35 |
33 34
|
mpan2 |
⊢ ( 𝑔 ∈ USGraph → ( ∀ 𝑣 ∈ ( Vtx ‘ 𝑔 ) ( ( VtxDeg ‘ 𝑔 ) ‘ 𝑣 ) = 0 ↔ ( ( 𝑔 ∈ USGraph ∧ 0 ∈ ℕ0* ) ∧ ∀ 𝑣 ∈ ( Vtx ‘ 𝑔 ) ( ( VtxDeg ‘ 𝑔 ) ‘ 𝑣 ) = 0 ) ) ) |
36 |
|
eqid |
⊢ ( Vtx ‘ 𝑔 ) = ( Vtx ‘ 𝑔 ) |
37 |
|
eqid |
⊢ ( VtxDeg ‘ 𝑔 ) = ( VtxDeg ‘ 𝑔 ) |
38 |
36 37
|
isrusgr0 |
⊢ ( ( 𝑔 ∈ USGraph ∧ 0 ∈ ℕ0* ) → ( 𝑔 RegUSGraph 0 ↔ ( 𝑔 ∈ USGraph ∧ 0 ∈ ℕ0* ∧ ∀ 𝑣 ∈ ( Vtx ‘ 𝑔 ) ( ( VtxDeg ‘ 𝑔 ) ‘ 𝑣 ) = 0 ) ) ) |
39 |
33 38
|
mpan2 |
⊢ ( 𝑔 ∈ USGraph → ( 𝑔 RegUSGraph 0 ↔ ( 𝑔 ∈ USGraph ∧ 0 ∈ ℕ0* ∧ ∀ 𝑣 ∈ ( Vtx ‘ 𝑔 ) ( ( VtxDeg ‘ 𝑔 ) ‘ 𝑣 ) = 0 ) ) ) |
40 |
32 35 39
|
3bitr4d |
⊢ ( 𝑔 ∈ USGraph → ( ∀ 𝑣 ∈ ( Vtx ‘ 𝑔 ) ( ( VtxDeg ‘ 𝑔 ) ‘ 𝑣 ) = 0 ↔ 𝑔 RegUSGraph 0 ) ) |
41 |
40
|
rabbiia |
⊢ { 𝑔 ∈ USGraph ∣ ∀ 𝑣 ∈ ( Vtx ‘ 𝑔 ) ( ( VtxDeg ‘ 𝑔 ) ‘ 𝑣 ) = 0 } = { 𝑔 ∈ USGraph ∣ 𝑔 RegUSGraph 0 } |
42 |
|
usgr0edg0rusgr |
⊢ ( 𝑔 ∈ USGraph → ( 𝑔 RegUSGraph 0 ↔ ( Edg ‘ 𝑔 ) = ∅ ) ) |
43 |
|
usgruhgr |
⊢ ( 𝑔 ∈ USGraph → 𝑔 ∈ UHGraph ) |
44 |
|
uhgriedg0edg0 |
⊢ ( 𝑔 ∈ UHGraph → ( ( Edg ‘ 𝑔 ) = ∅ ↔ ( iEdg ‘ 𝑔 ) = ∅ ) ) |
45 |
43 44
|
syl |
⊢ ( 𝑔 ∈ USGraph → ( ( Edg ‘ 𝑔 ) = ∅ ↔ ( iEdg ‘ 𝑔 ) = ∅ ) ) |
46 |
42 45
|
bitrd |
⊢ ( 𝑔 ∈ USGraph → ( 𝑔 RegUSGraph 0 ↔ ( iEdg ‘ 𝑔 ) = ∅ ) ) |
47 |
46
|
rabbiia |
⊢ { 𝑔 ∈ USGraph ∣ 𝑔 RegUSGraph 0 } = { 𝑔 ∈ USGraph ∣ ( iEdg ‘ 𝑔 ) = ∅ } |
48 |
41 47
|
eqtri |
⊢ { 𝑔 ∈ USGraph ∣ ∀ 𝑣 ∈ ( Vtx ‘ 𝑔 ) ( ( VtxDeg ‘ 𝑔 ) ‘ 𝑣 ) = 0 } = { 𝑔 ∈ USGraph ∣ ( iEdg ‘ 𝑔 ) = ∅ } |
49 |
|
neleq1 |
⊢ ( { 𝑔 ∈ USGraph ∣ ∀ 𝑣 ∈ ( Vtx ‘ 𝑔 ) ( ( VtxDeg ‘ 𝑔 ) ‘ 𝑣 ) = 0 } = { 𝑔 ∈ USGraph ∣ ( iEdg ‘ 𝑔 ) = ∅ } → ( { 𝑔 ∈ USGraph ∣ ∀ 𝑣 ∈ ( Vtx ‘ 𝑔 ) ( ( VtxDeg ‘ 𝑔 ) ‘ 𝑣 ) = 0 } ∉ V ↔ { 𝑔 ∈ USGraph ∣ ( iEdg ‘ 𝑔 ) = ∅ } ∉ V ) ) |
50 |
48 49
|
ax-mp |
⊢ ( { 𝑔 ∈ USGraph ∣ ∀ 𝑣 ∈ ( Vtx ‘ 𝑔 ) ( ( VtxDeg ‘ 𝑔 ) ‘ 𝑣 ) = 0 } ∉ V ↔ { 𝑔 ∈ USGraph ∣ ( iEdg ‘ 𝑔 ) = ∅ } ∉ V ) |
51 |
29 50
|
mpbir |
⊢ { 𝑔 ∈ USGraph ∣ ∀ 𝑣 ∈ ( Vtx ‘ 𝑔 ) ( ( VtxDeg ‘ 𝑔 ) ‘ 𝑣 ) = 0 } ∉ V |