Description: The superclass of a proper class is a proper class. (Contributed by AV, 27-Dec-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | prcssprc | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐴 ∉ V ) → 𝐵 ∉ V ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssexg | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ V ) → 𝐴 ∈ V ) | |
2 | 1 | ex | ⊢ ( 𝐴 ⊆ 𝐵 → ( 𝐵 ∈ V → 𝐴 ∈ V ) ) |
3 | 2 | nelcon3d | ⊢ ( 𝐴 ⊆ 𝐵 → ( 𝐴 ∉ V → 𝐵 ∉ V ) ) |
4 | 3 | imp | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐴 ∉ V ) → 𝐵 ∉ V ) |