Description: The superclass of a proper class is a proper class. (Contributed by AV, 27-Dec-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | prcssprc | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐴 ∉ V ) → 𝐵 ∉ V ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssexg | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ V ) → 𝐴 ∈ V ) | |
| 2 | 1 | ex | ⊢ ( 𝐴 ⊆ 𝐵 → ( 𝐵 ∈ V → 𝐴 ∈ V ) ) |
| 3 | 2 | nelcon3d | ⊢ ( 𝐴 ⊆ 𝐵 → ( 𝐴 ∉ V → 𝐵 ∉ V ) ) |
| 4 | 3 | imp | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐴 ∉ V ) → 𝐵 ∉ V ) |