Metamath Proof Explorer


Theorem prcssprc

Description: The superclass of a proper class is a proper class. (Contributed by AV, 27-Dec-2020)

Ref Expression
Assertion prcssprc ( ( 𝐴𝐵𝐴 ∉ V ) → 𝐵 ∉ V )

Proof

Step Hyp Ref Expression
1 ssexg ( ( 𝐴𝐵𝐵 ∈ V ) → 𝐴 ∈ V )
2 1 ex ( 𝐴𝐵 → ( 𝐵 ∈ V → 𝐴 ∈ V ) )
3 2 nelcon3d ( 𝐴𝐵 → ( 𝐴 ∉ V → 𝐵 ∉ V ) )
4 3 imp ( ( 𝐴𝐵𝐴 ∉ V ) → 𝐵 ∉ V )