Description: The class of empty graphs (represented as ordered pairs) is a proper class. (Contributed by AV, 27-Dec-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | griedg0prc.u | ⊢ 𝑈 = { 〈 𝑣 , 𝑒 〉 ∣ 𝑒 : ∅ ⟶ ∅ } | |
| Assertion | griedg0prc | ⊢ 𝑈 ∉ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | griedg0prc.u | ⊢ 𝑈 = { 〈 𝑣 , 𝑒 〉 ∣ 𝑒 : ∅ ⟶ ∅ } | |
| 2 | 0ex | ⊢ ∅ ∈ V | |
| 3 | feq1 | ⊢ ( 𝑒 = ∅ → ( 𝑒 : ∅ ⟶ ∅ ↔ ∅ : ∅ ⟶ ∅ ) ) | |
| 4 | f0 | ⊢ ∅ : ∅ ⟶ ∅ | |
| 5 | 2 3 4 | ceqsexv2d | ⊢ ∃ 𝑒 𝑒 : ∅ ⟶ ∅ |
| 6 | opabn1stprc | ⊢ ( ∃ 𝑒 𝑒 : ∅ ⟶ ∅ → { 〈 𝑣 , 𝑒 〉 ∣ 𝑒 : ∅ ⟶ ∅ } ∉ V ) | |
| 7 | 5 6 | ax-mp | ⊢ { 〈 𝑣 , 𝑒 〉 ∣ 𝑒 : ∅ ⟶ ∅ } ∉ V |
| 8 | neleq1 | ⊢ ( 𝑈 = { 〈 𝑣 , 𝑒 〉 ∣ 𝑒 : ∅ ⟶ ∅ } → ( 𝑈 ∉ V ↔ { 〈 𝑣 , 𝑒 〉 ∣ 𝑒 : ∅ ⟶ ∅ } ∉ V ) ) | |
| 9 | 1 8 | ax-mp | ⊢ ( 𝑈 ∉ V ↔ { 〈 𝑣 , 𝑒 〉 ∣ 𝑒 : ∅ ⟶ ∅ } ∉ V ) |
| 10 | 7 9 | mpbir | ⊢ 𝑈 ∉ V |