Metamath Proof Explorer


Theorem griedg0ssusgr

Description: The class of all simple graphs is a superclass of the class of empty graphs represented as ordered pairs. (Contributed by AV, 27-Dec-2020)

Ref Expression
Hypothesis griedg0prc.u 𝑈 = { ⟨ 𝑣 , 𝑒 ⟩ ∣ 𝑒 : ∅ ⟶ ∅ }
Assertion griedg0ssusgr 𝑈 ⊆ USGraph

Proof

Step Hyp Ref Expression
1 griedg0prc.u 𝑈 = { ⟨ 𝑣 , 𝑒 ⟩ ∣ 𝑒 : ∅ ⟶ ∅ }
2 1 eleq2i ( 𝑔𝑈𝑔 ∈ { ⟨ 𝑣 , 𝑒 ⟩ ∣ 𝑒 : ∅ ⟶ ∅ } )
3 elopab ( 𝑔 ∈ { ⟨ 𝑣 , 𝑒 ⟩ ∣ 𝑒 : ∅ ⟶ ∅ } ↔ ∃ 𝑣𝑒 ( 𝑔 = ⟨ 𝑣 , 𝑒 ⟩ ∧ 𝑒 : ∅ ⟶ ∅ ) )
4 2 3 bitri ( 𝑔𝑈 ↔ ∃ 𝑣𝑒 ( 𝑔 = ⟨ 𝑣 , 𝑒 ⟩ ∧ 𝑒 : ∅ ⟶ ∅ ) )
5 opex 𝑣 , 𝑒 ⟩ ∈ V
6 5 a1i ( 𝑒 : ∅ ⟶ ∅ → ⟨ 𝑣 , 𝑒 ⟩ ∈ V )
7 vex 𝑣 ∈ V
8 vex 𝑒 ∈ V
9 7 8 opiedgfvi ( iEdg ‘ ⟨ 𝑣 , 𝑒 ⟩ ) = 𝑒
10 f0bi ( 𝑒 : ∅ ⟶ ∅ ↔ 𝑒 = ∅ )
11 10 biimpi ( 𝑒 : ∅ ⟶ ∅ → 𝑒 = ∅ )
12 9 11 eqtrid ( 𝑒 : ∅ ⟶ ∅ → ( iEdg ‘ ⟨ 𝑣 , 𝑒 ⟩ ) = ∅ )
13 6 12 usgr0e ( 𝑒 : ∅ ⟶ ∅ → ⟨ 𝑣 , 𝑒 ⟩ ∈ USGraph )
14 13 adantl ( ( 𝑔 = ⟨ 𝑣 , 𝑒 ⟩ ∧ 𝑒 : ∅ ⟶ ∅ ) → ⟨ 𝑣 , 𝑒 ⟩ ∈ USGraph )
15 eleq1 ( 𝑔 = ⟨ 𝑣 , 𝑒 ⟩ → ( 𝑔 ∈ USGraph ↔ ⟨ 𝑣 , 𝑒 ⟩ ∈ USGraph ) )
16 15 adantr ( ( 𝑔 = ⟨ 𝑣 , 𝑒 ⟩ ∧ 𝑒 : ∅ ⟶ ∅ ) → ( 𝑔 ∈ USGraph ↔ ⟨ 𝑣 , 𝑒 ⟩ ∈ USGraph ) )
17 14 16 mpbird ( ( 𝑔 = ⟨ 𝑣 , 𝑒 ⟩ ∧ 𝑒 : ∅ ⟶ ∅ ) → 𝑔 ∈ USGraph )
18 17 exlimivv ( ∃ 𝑣𝑒 ( 𝑔 = ⟨ 𝑣 , 𝑒 ⟩ ∧ 𝑒 : ∅ ⟶ ∅ ) → 𝑔 ∈ USGraph )
19 4 18 sylbi ( 𝑔𝑈𝑔 ∈ USGraph )
20 19 ssriv 𝑈 ⊆ USGraph