Description: If the size of a set is 1 the set is not empty. (Contributed by AV, 23-Dec-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hash1n0 | |- ( ( A e. V /\ ( # ` A ) = 1 ) -> A =/= (/) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hash1snb | |- ( A e. V -> ( ( # ` A ) = 1 <-> E. a A = { a } ) ) |
|
| 2 | id | |- ( A = { a } -> A = { a } ) |
|
| 3 | vex | |- a e. _V |
|
| 4 | 3 | snnz | |- { a } =/= (/) |
| 5 | 4 | a1i | |- ( A = { a } -> { a } =/= (/) ) |
| 6 | 2 5 | eqnetrd | |- ( A = { a } -> A =/= (/) ) |
| 7 | 6 | exlimiv | |- ( E. a A = { a } -> A =/= (/) ) |
| 8 | 1 7 | biimtrdi | |- ( A e. V -> ( ( # ` A ) = 1 -> A =/= (/) ) ) |
| 9 | 8 | imp | |- ( ( A e. V /\ ( # ` A ) = 1 ) -> A =/= (/) ) |