Description: If the size of a set is 1 the set is not empty. (Contributed by AV, 23-Dec-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hash1n0 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( ♯ ‘ 𝐴 ) = 1 ) → 𝐴 ≠ ∅ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hash1snb | ⊢ ( 𝐴 ∈ 𝑉 → ( ( ♯ ‘ 𝐴 ) = 1 ↔ ∃ 𝑎 𝐴 = { 𝑎 } ) ) | |
| 2 | id | ⊢ ( 𝐴 = { 𝑎 } → 𝐴 = { 𝑎 } ) | |
| 3 | vex | ⊢ 𝑎 ∈ V | |
| 4 | 3 | snnz | ⊢ { 𝑎 } ≠ ∅ |
| 5 | 4 | a1i | ⊢ ( 𝐴 = { 𝑎 } → { 𝑎 } ≠ ∅ ) |
| 6 | 2 5 | eqnetrd | ⊢ ( 𝐴 = { 𝑎 } → 𝐴 ≠ ∅ ) |
| 7 | 6 | exlimiv | ⊢ ( ∃ 𝑎 𝐴 = { 𝑎 } → 𝐴 ≠ ∅ ) |
| 8 | 1 7 | biimtrdi | ⊢ ( 𝐴 ∈ 𝑉 → ( ( ♯ ‘ 𝐴 ) = 1 → 𝐴 ≠ ∅ ) ) |
| 9 | 8 | imp | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( ♯ ‘ 𝐴 ) = 1 ) → 𝐴 ≠ ∅ ) |