Database
REAL AND COMPLEX NUMBERS
Elementary integer functions
The ` # ` (set size) function
hash1n0
Next ⟩
hashgt12el
Metamath Proof Explorer
Ascii
Unicode
Theorem
hash1n0
Description:
If the size of a set is 1 the set is not empty.
(Contributed by
AV
, 23-Dec-2020)
Ref
Expression
Assertion
hash1n0
⊢
A
∈
V
∧
A
=
1
→
A
≠
∅
Proof
Step
Hyp
Ref
Expression
1
hash1snb
⊢
A
∈
V
→
A
=
1
↔
∃
a
A
=
a
2
id
⊢
A
=
a
→
A
=
a
3
vex
⊢
a
∈
V
4
3
snnz
⊢
a
≠
∅
5
4
a1i
⊢
A
=
a
→
a
≠
∅
6
2
5
eqnetrd
⊢
A
=
a
→
A
≠
∅
7
6
exlimiv
⊢
∃
a
A
=
a
→
A
≠
∅
8
1
7
biimtrdi
⊢
A
∈
V
→
A
=
1
→
A
≠
∅
9
8
imp
⊢
A
∈
V
∧
A
=
1
→
A
≠
∅