Metamath Proof Explorer


Theorem hash1n0

Description: If the size of a set is 1 the set is not empty. (Contributed by AV, 23-Dec-2020)

Ref Expression
Assertion hash1n0 AVA=1A

Proof

Step Hyp Ref Expression
1 hash1snb AVA=1aA=a
2 id A=aA=a
3 vex aV
4 3 snnz a
5 4 a1i A=aa
6 2 5 eqnetrd A=aA
7 6 exlimiv aA=aA
8 1 7 syl6bi AVA=1A
9 8 imp AVA=1A