| Step | Hyp | Ref | Expression | 
						
							| 1 |  | r19.26 | ⊢ ( ∀ 𝑣  ∈  𝑉 ( ( ♯ ‘ 𝐴 )  =  𝐾  ∧  𝐴  =  ∅ )  ↔  ( ∀ 𝑣  ∈  𝑉 ( ♯ ‘ 𝐴 )  =  𝐾  ∧  ∀ 𝑣  ∈  𝑉 𝐴  =  ∅ ) ) | 
						
							| 2 |  | fveqeq2 | ⊢ ( 𝐴  =  ∅  →  ( ( ♯ ‘ 𝐴 )  =  𝐾  ↔  ( ♯ ‘ ∅ )  =  𝐾 ) ) | 
						
							| 3 | 2 | biimpac | ⊢ ( ( ( ♯ ‘ 𝐴 )  =  𝐾  ∧  𝐴  =  ∅ )  →  ( ♯ ‘ ∅ )  =  𝐾 ) | 
						
							| 4 | 3 | ralimi | ⊢ ( ∀ 𝑣  ∈  𝑉 ( ( ♯ ‘ 𝐴 )  =  𝐾  ∧  𝐴  =  ∅ )  →  ∀ 𝑣  ∈  𝑉 ( ♯ ‘ ∅ )  =  𝐾 ) | 
						
							| 5 |  | hash1n0 | ⊢ ( ( 𝑉  ∈  𝑊  ∧  ( ♯ ‘ 𝑉 )  =  1 )  →  𝑉  ≠  ∅ ) | 
						
							| 6 |  | rspn0 | ⊢ ( 𝑉  ≠  ∅  →  ( ∀ 𝑣  ∈  𝑉 ( ♯ ‘ ∅ )  =  𝐾  →  ( ♯ ‘ ∅ )  =  𝐾 ) ) | 
						
							| 7 | 5 6 | syl | ⊢ ( ( 𝑉  ∈  𝑊  ∧  ( ♯ ‘ 𝑉 )  =  1 )  →  ( ∀ 𝑣  ∈  𝑉 ( ♯ ‘ ∅ )  =  𝐾  →  ( ♯ ‘ ∅ )  =  𝐾 ) ) | 
						
							| 8 |  | hash0 | ⊢ ( ♯ ‘ ∅ )  =  0 | 
						
							| 9 |  | eqeq1 | ⊢ ( ( ♯ ‘ ∅ )  =  𝐾  →  ( ( ♯ ‘ ∅ )  =  0  ↔  𝐾  =  0 ) ) | 
						
							| 10 | 8 9 | mpbii | ⊢ ( ( ♯ ‘ ∅ )  =  𝐾  →  𝐾  =  0 ) | 
						
							| 11 | 7 10 | syl6com | ⊢ ( ∀ 𝑣  ∈  𝑉 ( ♯ ‘ ∅ )  =  𝐾  →  ( ( 𝑉  ∈  𝑊  ∧  ( ♯ ‘ 𝑉 )  =  1 )  →  𝐾  =  0 ) ) | 
						
							| 12 | 4 11 | syl | ⊢ ( ∀ 𝑣  ∈  𝑉 ( ( ♯ ‘ 𝐴 )  =  𝐾  ∧  𝐴  =  ∅ )  →  ( ( 𝑉  ∈  𝑊  ∧  ( ♯ ‘ 𝑉 )  =  1 )  →  𝐾  =  0 ) ) | 
						
							| 13 | 1 12 | sylbir | ⊢ ( ( ∀ 𝑣  ∈  𝑉 ( ♯ ‘ 𝐴 )  =  𝐾  ∧  ∀ 𝑣  ∈  𝑉 𝐴  =  ∅ )  →  ( ( 𝑉  ∈  𝑊  ∧  ( ♯ ‘ 𝑉 )  =  1 )  →  𝐾  =  0 ) ) | 
						
							| 14 | 13 | imp | ⊢ ( ( ( ∀ 𝑣  ∈  𝑉 ( ♯ ‘ 𝐴 )  =  𝐾  ∧  ∀ 𝑣  ∈  𝑉 𝐴  =  ∅ )  ∧  ( 𝑉  ∈  𝑊  ∧  ( ♯ ‘ 𝑉 )  =  1 ) )  →  𝐾  =  0 ) |