Metamath Proof Explorer


Theorem rusgr1vtxlem

Description: Lemma for rusgr1vtx . (Contributed by AV, 27-Dec-2020)

Ref Expression
Assertion rusgr1vtxlem ( ( ( ∀ 𝑣𝑉 ( ♯ ‘ 𝐴 ) = 𝐾 ∧ ∀ 𝑣𝑉 𝐴 = ∅ ) ∧ ( 𝑉𝑊 ∧ ( ♯ ‘ 𝑉 ) = 1 ) ) → 𝐾 = 0 )

Proof

Step Hyp Ref Expression
1 r19.26 ( ∀ 𝑣𝑉 ( ( ♯ ‘ 𝐴 ) = 𝐾𝐴 = ∅ ) ↔ ( ∀ 𝑣𝑉 ( ♯ ‘ 𝐴 ) = 𝐾 ∧ ∀ 𝑣𝑉 𝐴 = ∅ ) )
2 fveqeq2 ( 𝐴 = ∅ → ( ( ♯ ‘ 𝐴 ) = 𝐾 ↔ ( ♯ ‘ ∅ ) = 𝐾 ) )
3 2 biimpac ( ( ( ♯ ‘ 𝐴 ) = 𝐾𝐴 = ∅ ) → ( ♯ ‘ ∅ ) = 𝐾 )
4 3 ralimi ( ∀ 𝑣𝑉 ( ( ♯ ‘ 𝐴 ) = 𝐾𝐴 = ∅ ) → ∀ 𝑣𝑉 ( ♯ ‘ ∅ ) = 𝐾 )
5 hash1n0 ( ( 𝑉𝑊 ∧ ( ♯ ‘ 𝑉 ) = 1 ) → 𝑉 ≠ ∅ )
6 rspn0 ( 𝑉 ≠ ∅ → ( ∀ 𝑣𝑉 ( ♯ ‘ ∅ ) = 𝐾 → ( ♯ ‘ ∅ ) = 𝐾 ) )
7 5 6 syl ( ( 𝑉𝑊 ∧ ( ♯ ‘ 𝑉 ) = 1 ) → ( ∀ 𝑣𝑉 ( ♯ ‘ ∅ ) = 𝐾 → ( ♯ ‘ ∅ ) = 𝐾 ) )
8 hash0 ( ♯ ‘ ∅ ) = 0
9 eqeq1 ( ( ♯ ‘ ∅ ) = 𝐾 → ( ( ♯ ‘ ∅ ) = 0 ↔ 𝐾 = 0 ) )
10 8 9 mpbii ( ( ♯ ‘ ∅ ) = 𝐾𝐾 = 0 )
11 7 10 syl6com ( ∀ 𝑣𝑉 ( ♯ ‘ ∅ ) = 𝐾 → ( ( 𝑉𝑊 ∧ ( ♯ ‘ 𝑉 ) = 1 ) → 𝐾 = 0 ) )
12 4 11 syl ( ∀ 𝑣𝑉 ( ( ♯ ‘ 𝐴 ) = 𝐾𝐴 = ∅ ) → ( ( 𝑉𝑊 ∧ ( ♯ ‘ 𝑉 ) = 1 ) → 𝐾 = 0 ) )
13 1 12 sylbir ( ( ∀ 𝑣𝑉 ( ♯ ‘ 𝐴 ) = 𝐾 ∧ ∀ 𝑣𝑉 𝐴 = ∅ ) → ( ( 𝑉𝑊 ∧ ( ♯ ‘ 𝑉 ) = 1 ) → 𝐾 = 0 ) )
14 13 imp ( ( ( ∀ 𝑣𝑉 ( ♯ ‘ 𝐴 ) = 𝐾 ∧ ∀ 𝑣𝑉 𝐴 = ∅ ) ∧ ( 𝑉𝑊 ∧ ( ♯ ‘ 𝑉 ) = 1 ) ) → 𝐾 = 0 )