Metamath Proof Explorer


Theorem rusgrpropnb

Description: The properties of a k-regular simple graph expressed with neighbors. (Contributed by Alexander van der Vekens, 26-Jul-2018) (Revised by AV, 26-Dec-2020)

Ref Expression
Hypothesis rusgrpropnb.v 𝑉 = ( Vtx ‘ 𝐺 )
Assertion rusgrpropnb ( 𝐺 RegUSGraph 𝐾 → ( 𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀ 𝑣𝑉 ( ♯ ‘ ( 𝐺 NeighbVtx 𝑣 ) ) = 𝐾 ) )

Proof

Step Hyp Ref Expression
1 rusgrpropnb.v 𝑉 = ( Vtx ‘ 𝐺 )
2 eqid ( VtxDeg ‘ 𝐺 ) = ( VtxDeg ‘ 𝐺 )
3 1 2 rusgrprop0 ( 𝐺 RegUSGraph 𝐾 → ( 𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀ 𝑣𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) = 𝐾 ) )
4 simp1 ( ( 𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀ 𝑣𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) = 𝐾 ) → 𝐺 ∈ USGraph )
5 simp2 ( ( 𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀ 𝑣𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) = 𝐾 ) → 𝐾 ∈ ℕ0* )
6 1 hashnbusgrvd ( ( 𝐺 ∈ USGraph ∧ 𝑣𝑉 ) → ( ♯ ‘ ( 𝐺 NeighbVtx 𝑣 ) ) = ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) )
7 6 adantlr ( ( ( 𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ) ∧ 𝑣𝑉 ) → ( ♯ ‘ ( 𝐺 NeighbVtx 𝑣 ) ) = ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) )
8 eqeq2 ( 𝐾 = ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) → ( ( ♯ ‘ ( 𝐺 NeighbVtx 𝑣 ) ) = 𝐾 ↔ ( ♯ ‘ ( 𝐺 NeighbVtx 𝑣 ) ) = ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) ) )
9 8 eqcoms ( ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) = 𝐾 → ( ( ♯ ‘ ( 𝐺 NeighbVtx 𝑣 ) ) = 𝐾 ↔ ( ♯ ‘ ( 𝐺 NeighbVtx 𝑣 ) ) = ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) ) )
10 7 9 syl5ibrcom ( ( ( 𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ) ∧ 𝑣𝑉 ) → ( ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) = 𝐾 → ( ♯ ‘ ( 𝐺 NeighbVtx 𝑣 ) ) = 𝐾 ) )
11 10 ralimdva ( ( 𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ) → ( ∀ 𝑣𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) = 𝐾 → ∀ 𝑣𝑉 ( ♯ ‘ ( 𝐺 NeighbVtx 𝑣 ) ) = 𝐾 ) )
12 11 3impia ( ( 𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀ 𝑣𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) = 𝐾 ) → ∀ 𝑣𝑉 ( ♯ ‘ ( 𝐺 NeighbVtx 𝑣 ) ) = 𝐾 )
13 4 5 12 3jca ( ( 𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀ 𝑣𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) = 𝐾 ) → ( 𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀ 𝑣𝑉 ( ♯ ‘ ( 𝐺 NeighbVtx 𝑣 ) ) = 𝐾 ) )
14 3 13 syl ( 𝐺 RegUSGraph 𝐾 → ( 𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀ 𝑣𝑉 ( ♯ ‘ ( 𝐺 NeighbVtx 𝑣 ) ) = 𝐾 ) )