| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rusgrpropnb.v | ⊢ 𝑉  =  ( Vtx ‘ 𝐺 ) | 
						
							| 2 | 1 | rusgrpropnb | ⊢ ( 𝐺  RegUSGraph  𝐾  →  ( 𝐺  ∈  USGraph  ∧  𝐾  ∈  ℕ0*  ∧  ∀ 𝑣  ∈  𝑉 ( ♯ ‘ ( 𝐺  NeighbVtx  𝑣 ) )  =  𝐾 ) ) | 
						
							| 3 |  | eqid | ⊢ ( Edg ‘ 𝐺 )  =  ( Edg ‘ 𝐺 ) | 
						
							| 4 | 1 3 | nbedgusgr | ⊢ ( ( 𝐺  ∈  USGraph  ∧  𝑣  ∈  𝑉 )  →  ( ♯ ‘ ( 𝐺  NeighbVtx  𝑣 ) )  =  ( ♯ ‘ { 𝑒  ∈  ( Edg ‘ 𝐺 )  ∣  𝑣  ∈  𝑒 } ) ) | 
						
							| 5 | 4 | eqeq1d | ⊢ ( ( 𝐺  ∈  USGraph  ∧  𝑣  ∈  𝑉 )  →  ( ( ♯ ‘ ( 𝐺  NeighbVtx  𝑣 ) )  =  𝐾  ↔  ( ♯ ‘ { 𝑒  ∈  ( Edg ‘ 𝐺 )  ∣  𝑣  ∈  𝑒 } )  =  𝐾 ) ) | 
						
							| 6 | 5 | biimpd | ⊢ ( ( 𝐺  ∈  USGraph  ∧  𝑣  ∈  𝑉 )  →  ( ( ♯ ‘ ( 𝐺  NeighbVtx  𝑣 ) )  =  𝐾  →  ( ♯ ‘ { 𝑒  ∈  ( Edg ‘ 𝐺 )  ∣  𝑣  ∈  𝑒 } )  =  𝐾 ) ) | 
						
							| 7 | 6 | ralimdva | ⊢ ( 𝐺  ∈  USGraph  →  ( ∀ 𝑣  ∈  𝑉 ( ♯ ‘ ( 𝐺  NeighbVtx  𝑣 ) )  =  𝐾  →  ∀ 𝑣  ∈  𝑉 ( ♯ ‘ { 𝑒  ∈  ( Edg ‘ 𝐺 )  ∣  𝑣  ∈  𝑒 } )  =  𝐾 ) ) | 
						
							| 8 | 7 | adantr | ⊢ ( ( 𝐺  ∈  USGraph  ∧  𝐾  ∈  ℕ0* )  →  ( ∀ 𝑣  ∈  𝑉 ( ♯ ‘ ( 𝐺  NeighbVtx  𝑣 ) )  =  𝐾  →  ∀ 𝑣  ∈  𝑉 ( ♯ ‘ { 𝑒  ∈  ( Edg ‘ 𝐺 )  ∣  𝑣  ∈  𝑒 } )  =  𝐾 ) ) | 
						
							| 9 | 8 | imdistani | ⊢ ( ( ( 𝐺  ∈  USGraph  ∧  𝐾  ∈  ℕ0* )  ∧  ∀ 𝑣  ∈  𝑉 ( ♯ ‘ ( 𝐺  NeighbVtx  𝑣 ) )  =  𝐾 )  →  ( ( 𝐺  ∈  USGraph  ∧  𝐾  ∈  ℕ0* )  ∧  ∀ 𝑣  ∈  𝑉 ( ♯ ‘ { 𝑒  ∈  ( Edg ‘ 𝐺 )  ∣  𝑣  ∈  𝑒 } )  =  𝐾 ) ) | 
						
							| 10 |  | df-3an | ⊢ ( ( 𝐺  ∈  USGraph  ∧  𝐾  ∈  ℕ0*  ∧  ∀ 𝑣  ∈  𝑉 ( ♯ ‘ ( 𝐺  NeighbVtx  𝑣 ) )  =  𝐾 )  ↔  ( ( 𝐺  ∈  USGraph  ∧  𝐾  ∈  ℕ0* )  ∧  ∀ 𝑣  ∈  𝑉 ( ♯ ‘ ( 𝐺  NeighbVtx  𝑣 ) )  =  𝐾 ) ) | 
						
							| 11 |  | df-3an | ⊢ ( ( 𝐺  ∈  USGraph  ∧  𝐾  ∈  ℕ0*  ∧  ∀ 𝑣  ∈  𝑉 ( ♯ ‘ { 𝑒  ∈  ( Edg ‘ 𝐺 )  ∣  𝑣  ∈  𝑒 } )  =  𝐾 )  ↔  ( ( 𝐺  ∈  USGraph  ∧  𝐾  ∈  ℕ0* )  ∧  ∀ 𝑣  ∈  𝑉 ( ♯ ‘ { 𝑒  ∈  ( Edg ‘ 𝐺 )  ∣  𝑣  ∈  𝑒 } )  =  𝐾 ) ) | 
						
							| 12 | 9 10 11 | 3imtr4i | ⊢ ( ( 𝐺  ∈  USGraph  ∧  𝐾  ∈  ℕ0*  ∧  ∀ 𝑣  ∈  𝑉 ( ♯ ‘ ( 𝐺  NeighbVtx  𝑣 ) )  =  𝐾 )  →  ( 𝐺  ∈  USGraph  ∧  𝐾  ∈  ℕ0*  ∧  ∀ 𝑣  ∈  𝑉 ( ♯ ‘ { 𝑒  ∈  ( Edg ‘ 𝐺 )  ∣  𝑣  ∈  𝑒 } )  =  𝐾 ) ) | 
						
							| 13 | 2 12 | syl | ⊢ ( 𝐺  RegUSGraph  𝐾  →  ( 𝐺  ∈  USGraph  ∧  𝐾  ∈  ℕ0*  ∧  ∀ 𝑣  ∈  𝑉 ( ♯ ‘ { 𝑒  ∈  ( Edg ‘ 𝐺 )  ∣  𝑣  ∈  𝑒 } )  =  𝐾 ) ) |