| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fveq1 | ⊢ ( 𝑤  =  𝑌  →  ( 𝑤 ‘ 0 )  =  ( 𝑌 ‘ 0 ) ) | 
						
							| 2 | 1 | eqeq1d | ⊢ ( 𝑤  =  𝑌  →  ( ( 𝑤 ‘ 0 )  =  𝑃  ↔  ( 𝑌 ‘ 0 )  =  𝑃 ) ) | 
						
							| 3 | 2 | elrab | ⊢ ( 𝑌  ∈  { 𝑤  ∈  𝑍  ∣  ( 𝑤 ‘ 0 )  =  𝑃 }  ↔  ( 𝑌  ∈  𝑍  ∧  ( 𝑌 ‘ 0 )  =  𝑃 ) ) | 
						
							| 4 |  | ibar | ⊢ ( ( 𝑌 ‘ 0 )  =  𝑃  →  ( ( 𝜑  ∧  𝜓 )  ↔  ( ( 𝑌 ‘ 0 )  =  𝑃  ∧  ( 𝜑  ∧  𝜓 ) ) ) ) | 
						
							| 5 |  | 3anass | ⊢ ( ( ( 𝑌 ‘ 0 )  =  𝑃  ∧  𝜑  ∧  𝜓 )  ↔  ( ( 𝑌 ‘ 0 )  =  𝑃  ∧  ( 𝜑  ∧  𝜓 ) ) ) | 
						
							| 6 |  | 3ancoma | ⊢ ( ( ( 𝑌 ‘ 0 )  =  𝑃  ∧  𝜑  ∧  𝜓 )  ↔  ( 𝜑  ∧  ( 𝑌 ‘ 0 )  =  𝑃  ∧  𝜓 ) ) | 
						
							| 7 | 5 6 | bitr3i | ⊢ ( ( ( 𝑌 ‘ 0 )  =  𝑃  ∧  ( 𝜑  ∧  𝜓 ) )  ↔  ( 𝜑  ∧  ( 𝑌 ‘ 0 )  =  𝑃  ∧  𝜓 ) ) | 
						
							| 8 | 4 7 | bitrdi | ⊢ ( ( 𝑌 ‘ 0 )  =  𝑃  →  ( ( 𝜑  ∧  𝜓 )  ↔  ( 𝜑  ∧  ( 𝑌 ‘ 0 )  =  𝑃  ∧  𝜓 ) ) ) | 
						
							| 9 | 8 | ad2antlr | ⊢ ( ( ( 𝑌  ∈  𝑍  ∧  ( 𝑌 ‘ 0 )  =  𝑃 )  ∧  𝑤  ∈  𝑋 )  →  ( ( 𝜑  ∧  𝜓 )  ↔  ( 𝜑  ∧  ( 𝑌 ‘ 0 )  =  𝑃  ∧  𝜓 ) ) ) | 
						
							| 10 | 9 | rabbidva | ⊢ ( ( 𝑌  ∈  𝑍  ∧  ( 𝑌 ‘ 0 )  =  𝑃 )  →  { 𝑤  ∈  𝑋  ∣  ( 𝜑  ∧  𝜓 ) }  =  { 𝑤  ∈  𝑋  ∣  ( 𝜑  ∧  ( 𝑌 ‘ 0 )  =  𝑃  ∧  𝜓 ) } ) | 
						
							| 11 | 3 10 | sylbi | ⊢ ( 𝑌  ∈  { 𝑤  ∈  𝑍  ∣  ( 𝑤 ‘ 0 )  =  𝑃 }  →  { 𝑤  ∈  𝑋  ∣  ( 𝜑  ∧  𝜓 ) }  =  { 𝑤  ∈  𝑋  ∣  ( 𝜑  ∧  ( 𝑌 ‘ 0 )  =  𝑃  ∧  𝜓 ) } ) |