Metamath Proof Explorer


Theorem rusgrnumwwlkslem

Description: Lemma for rusgrnumwwlks . (Contributed by Alexander van der Vekens, 23-Aug-2018)

Ref Expression
Assertion rusgrnumwwlkslem ( 𝑌 ∈ { 𝑤𝑍 ∣ ( 𝑤 ‘ 0 ) = 𝑃 } → { 𝑤𝑋 ∣ ( 𝜑𝜓 ) } = { 𝑤𝑋 ∣ ( 𝜑 ∧ ( 𝑌 ‘ 0 ) = 𝑃𝜓 ) } )

Proof

Step Hyp Ref Expression
1 fveq1 ( 𝑤 = 𝑌 → ( 𝑤 ‘ 0 ) = ( 𝑌 ‘ 0 ) )
2 1 eqeq1d ( 𝑤 = 𝑌 → ( ( 𝑤 ‘ 0 ) = 𝑃 ↔ ( 𝑌 ‘ 0 ) = 𝑃 ) )
3 2 elrab ( 𝑌 ∈ { 𝑤𝑍 ∣ ( 𝑤 ‘ 0 ) = 𝑃 } ↔ ( 𝑌𝑍 ∧ ( 𝑌 ‘ 0 ) = 𝑃 ) )
4 ibar ( ( 𝑌 ‘ 0 ) = 𝑃 → ( ( 𝜑𝜓 ) ↔ ( ( 𝑌 ‘ 0 ) = 𝑃 ∧ ( 𝜑𝜓 ) ) ) )
5 3anass ( ( ( 𝑌 ‘ 0 ) = 𝑃𝜑𝜓 ) ↔ ( ( 𝑌 ‘ 0 ) = 𝑃 ∧ ( 𝜑𝜓 ) ) )
6 3ancoma ( ( ( 𝑌 ‘ 0 ) = 𝑃𝜑𝜓 ) ↔ ( 𝜑 ∧ ( 𝑌 ‘ 0 ) = 𝑃𝜓 ) )
7 5 6 bitr3i ( ( ( 𝑌 ‘ 0 ) = 𝑃 ∧ ( 𝜑𝜓 ) ) ↔ ( 𝜑 ∧ ( 𝑌 ‘ 0 ) = 𝑃𝜓 ) )
8 4 7 bitrdi ( ( 𝑌 ‘ 0 ) = 𝑃 → ( ( 𝜑𝜓 ) ↔ ( 𝜑 ∧ ( 𝑌 ‘ 0 ) = 𝑃𝜓 ) ) )
9 8 ad2antlr ( ( ( 𝑌𝑍 ∧ ( 𝑌 ‘ 0 ) = 𝑃 ) ∧ 𝑤𝑋 ) → ( ( 𝜑𝜓 ) ↔ ( 𝜑 ∧ ( 𝑌 ‘ 0 ) = 𝑃𝜓 ) ) )
10 9 rabbidva ( ( 𝑌𝑍 ∧ ( 𝑌 ‘ 0 ) = 𝑃 ) → { 𝑤𝑋 ∣ ( 𝜑𝜓 ) } = { 𝑤𝑋 ∣ ( 𝜑 ∧ ( 𝑌 ‘ 0 ) = 𝑃𝜓 ) } )
11 3 10 sylbi ( 𝑌 ∈ { 𝑤𝑍 ∣ ( 𝑤 ‘ 0 ) = 𝑃 } → { 𝑤𝑋 ∣ ( 𝜑𝜓 ) } = { 𝑤𝑋 ∣ ( 𝜑 ∧ ( 𝑌 ‘ 0 ) = 𝑃𝜓 ) } )