| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fveq1 |  |-  ( w = Y -> ( w ` 0 ) = ( Y ` 0 ) ) | 
						
							| 2 | 1 | eqeq1d |  |-  ( w = Y -> ( ( w ` 0 ) = P <-> ( Y ` 0 ) = P ) ) | 
						
							| 3 | 2 | elrab |  |-  ( Y e. { w e. Z | ( w ` 0 ) = P } <-> ( Y e. Z /\ ( Y ` 0 ) = P ) ) | 
						
							| 4 |  | ibar |  |-  ( ( Y ` 0 ) = P -> ( ( ph /\ ps ) <-> ( ( Y ` 0 ) = P /\ ( ph /\ ps ) ) ) ) | 
						
							| 5 |  | 3anass |  |-  ( ( ( Y ` 0 ) = P /\ ph /\ ps ) <-> ( ( Y ` 0 ) = P /\ ( ph /\ ps ) ) ) | 
						
							| 6 |  | 3ancoma |  |-  ( ( ( Y ` 0 ) = P /\ ph /\ ps ) <-> ( ph /\ ( Y ` 0 ) = P /\ ps ) ) | 
						
							| 7 | 5 6 | bitr3i |  |-  ( ( ( Y ` 0 ) = P /\ ( ph /\ ps ) ) <-> ( ph /\ ( Y ` 0 ) = P /\ ps ) ) | 
						
							| 8 | 4 7 | bitrdi |  |-  ( ( Y ` 0 ) = P -> ( ( ph /\ ps ) <-> ( ph /\ ( Y ` 0 ) = P /\ ps ) ) ) | 
						
							| 9 | 8 | ad2antlr |  |-  ( ( ( Y e. Z /\ ( Y ` 0 ) = P ) /\ w e. X ) -> ( ( ph /\ ps ) <-> ( ph /\ ( Y ` 0 ) = P /\ ps ) ) ) | 
						
							| 10 | 9 | rabbidva |  |-  ( ( Y e. Z /\ ( Y ` 0 ) = P ) -> { w e. X | ( ph /\ ps ) } = { w e. X | ( ph /\ ( Y ` 0 ) = P /\ ps ) } ) | 
						
							| 11 | 3 10 | sylbi |  |-  ( Y e. { w e. Z | ( w ` 0 ) = P } -> { w e. X | ( ph /\ ps ) } = { w e. X | ( ph /\ ( Y ` 0 ) = P /\ ps ) } ) |