| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rusgrnumwwlk.v |  |-  V = ( Vtx ` G ) | 
						
							| 2 |  | rusgrnumwwlk.l |  |-  L = ( v e. V , n e. NN0 |-> ( # ` { w e. ( n WWalksN G ) | ( w ` 0 ) = v } ) ) | 
						
							| 3 |  | oveq1 |  |-  ( n = N -> ( n WWalksN G ) = ( N WWalksN G ) ) | 
						
							| 4 | 3 | adantl |  |-  ( ( v = P /\ n = N ) -> ( n WWalksN G ) = ( N WWalksN G ) ) | 
						
							| 5 |  | eqeq2 |  |-  ( v = P -> ( ( w ` 0 ) = v <-> ( w ` 0 ) = P ) ) | 
						
							| 6 | 5 | adantr |  |-  ( ( v = P /\ n = N ) -> ( ( w ` 0 ) = v <-> ( w ` 0 ) = P ) ) | 
						
							| 7 | 4 6 | rabeqbidv |  |-  ( ( v = P /\ n = N ) -> { w e. ( n WWalksN G ) | ( w ` 0 ) = v } = { w e. ( N WWalksN G ) | ( w ` 0 ) = P } ) | 
						
							| 8 | 7 | fveq2d |  |-  ( ( v = P /\ n = N ) -> ( # ` { w e. ( n WWalksN G ) | ( w ` 0 ) = v } ) = ( # ` { w e. ( N WWalksN G ) | ( w ` 0 ) = P } ) ) | 
						
							| 9 |  | fvex |  |-  ( # ` { w e. ( N WWalksN G ) | ( w ` 0 ) = P } ) e. _V | 
						
							| 10 | 8 2 9 | ovmpoa |  |-  ( ( P e. V /\ N e. NN0 ) -> ( P L N ) = ( # ` { w e. ( N WWalksN G ) | ( w ` 0 ) = P } ) ) |