Metamath Proof Explorer


Theorem rusgrnumwwlklem

Description: Lemma for rusgrnumwwlk etc. (Contributed by Alexander van der Vekens, 21-Jul-2018) (Revised by AV, 7-May-2021)

Ref Expression
Hypotheses rusgrnumwwlk.v
|- V = ( Vtx ` G )
rusgrnumwwlk.l
|- L = ( v e. V , n e. NN0 |-> ( # ` { w e. ( n WWalksN G ) | ( w ` 0 ) = v } ) )
Assertion rusgrnumwwlklem
|- ( ( P e. V /\ N e. NN0 ) -> ( P L N ) = ( # ` { w e. ( N WWalksN G ) | ( w ` 0 ) = P } ) )

Proof

Step Hyp Ref Expression
1 rusgrnumwwlk.v
 |-  V = ( Vtx ` G )
2 rusgrnumwwlk.l
 |-  L = ( v e. V , n e. NN0 |-> ( # ` { w e. ( n WWalksN G ) | ( w ` 0 ) = v } ) )
3 oveq1
 |-  ( n = N -> ( n WWalksN G ) = ( N WWalksN G ) )
4 3 adantl
 |-  ( ( v = P /\ n = N ) -> ( n WWalksN G ) = ( N WWalksN G ) )
5 eqeq2
 |-  ( v = P -> ( ( w ` 0 ) = v <-> ( w ` 0 ) = P ) )
6 5 adantr
 |-  ( ( v = P /\ n = N ) -> ( ( w ` 0 ) = v <-> ( w ` 0 ) = P ) )
7 4 6 rabeqbidv
 |-  ( ( v = P /\ n = N ) -> { w e. ( n WWalksN G ) | ( w ` 0 ) = v } = { w e. ( N WWalksN G ) | ( w ` 0 ) = P } )
8 7 fveq2d
 |-  ( ( v = P /\ n = N ) -> ( # ` { w e. ( n WWalksN G ) | ( w ` 0 ) = v } ) = ( # ` { w e. ( N WWalksN G ) | ( w ` 0 ) = P } ) )
9 fvex
 |-  ( # ` { w e. ( N WWalksN G ) | ( w ` 0 ) = P } ) e. _V
10 8 2 9 ovmpoa
 |-  ( ( P e. V /\ N e. NN0 ) -> ( P L N ) = ( # ` { w e. ( N WWalksN G ) | ( w ` 0 ) = P } ) )