Step |
Hyp |
Ref |
Expression |
1 |
|
rusgrnumwwlk.v |
|- V = ( Vtx ` G ) |
2 |
|
rusgrnumwwlk.l |
|- L = ( v e. V , n e. NN0 |-> ( # ` { w e. ( n WWalksN G ) | ( w ` 0 ) = v } ) ) |
3 |
|
oveq1 |
|- ( n = N -> ( n WWalksN G ) = ( N WWalksN G ) ) |
4 |
3
|
adantl |
|- ( ( v = P /\ n = N ) -> ( n WWalksN G ) = ( N WWalksN G ) ) |
5 |
|
eqeq2 |
|- ( v = P -> ( ( w ` 0 ) = v <-> ( w ` 0 ) = P ) ) |
6 |
5
|
adantr |
|- ( ( v = P /\ n = N ) -> ( ( w ` 0 ) = v <-> ( w ` 0 ) = P ) ) |
7 |
4 6
|
rabeqbidv |
|- ( ( v = P /\ n = N ) -> { w e. ( n WWalksN G ) | ( w ` 0 ) = v } = { w e. ( N WWalksN G ) | ( w ` 0 ) = P } ) |
8 |
7
|
fveq2d |
|- ( ( v = P /\ n = N ) -> ( # ` { w e. ( n WWalksN G ) | ( w ` 0 ) = v } ) = ( # ` { w e. ( N WWalksN G ) | ( w ` 0 ) = P } ) ) |
9 |
|
fvex |
|- ( # ` { w e. ( N WWalksN G ) | ( w ` 0 ) = P } ) e. _V |
10 |
8 2 9
|
ovmpoa |
|- ( ( P e. V /\ N e. NN0 ) -> ( P L N ) = ( # ` { w e. ( N WWalksN G ) | ( w ` 0 ) = P } ) ) |