| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rusgrnumwwlk.v |  |-  V = ( Vtx ` G ) | 
						
							| 2 |  | rusgrnumwwlk.l |  |-  L = ( v e. V , n e. NN0 |-> ( # ` { w e. ( n WWalksN G ) | ( w ` 0 ) = v } ) ) | 
						
							| 3 |  | simpr |  |-  ( ( G e. USPGraph /\ P e. V ) -> P e. V ) | 
						
							| 4 |  | 0nn0 |  |-  0 e. NN0 | 
						
							| 5 | 1 2 | rusgrnumwwlklem |  |-  ( ( P e. V /\ 0 e. NN0 ) -> ( P L 0 ) = ( # ` { w e. ( 0 WWalksN G ) | ( w ` 0 ) = P } ) ) | 
						
							| 6 | 3 4 5 | sylancl |  |-  ( ( G e. USPGraph /\ P e. V ) -> ( P L 0 ) = ( # ` { w e. ( 0 WWalksN G ) | ( w ` 0 ) = P } ) ) | 
						
							| 7 |  | df-rab |  |-  { w e. ( 0 WWalksN G ) | ( w ` 0 ) = P } = { w | ( w e. ( 0 WWalksN G ) /\ ( w ` 0 ) = P ) } | 
						
							| 8 | 7 | a1i |  |-  ( ( G e. USPGraph /\ P e. V ) -> { w e. ( 0 WWalksN G ) | ( w ` 0 ) = P } = { w | ( w e. ( 0 WWalksN G ) /\ ( w ` 0 ) = P ) } ) | 
						
							| 9 |  | wwlksn0s |  |-  ( 0 WWalksN G ) = { w e. Word ( Vtx ` G ) | ( # ` w ) = 1 } | 
						
							| 10 | 9 | a1i |  |-  ( ( G e. USPGraph /\ P e. V ) -> ( 0 WWalksN G ) = { w e. Word ( Vtx ` G ) | ( # ` w ) = 1 } ) | 
						
							| 11 | 10 | eleq2d |  |-  ( ( G e. USPGraph /\ P e. V ) -> ( w e. ( 0 WWalksN G ) <-> w e. { w e. Word ( Vtx ` G ) | ( # ` w ) = 1 } ) ) | 
						
							| 12 |  | rabid |  |-  ( w e. { w e. Word ( Vtx ` G ) | ( # ` w ) = 1 } <-> ( w e. Word ( Vtx ` G ) /\ ( # ` w ) = 1 ) ) | 
						
							| 13 | 11 12 | bitrdi |  |-  ( ( G e. USPGraph /\ P e. V ) -> ( w e. ( 0 WWalksN G ) <-> ( w e. Word ( Vtx ` G ) /\ ( # ` w ) = 1 ) ) ) | 
						
							| 14 | 13 | anbi1d |  |-  ( ( G e. USPGraph /\ P e. V ) -> ( ( w e. ( 0 WWalksN G ) /\ ( w ` 0 ) = P ) <-> ( ( w e. Word ( Vtx ` G ) /\ ( # ` w ) = 1 ) /\ ( w ` 0 ) = P ) ) ) | 
						
							| 15 | 14 | abbidv |  |-  ( ( G e. USPGraph /\ P e. V ) -> { w | ( w e. ( 0 WWalksN G ) /\ ( w ` 0 ) = P ) } = { w | ( ( w e. Word ( Vtx ` G ) /\ ( # ` w ) = 1 ) /\ ( w ` 0 ) = P ) } ) | 
						
							| 16 |  | wrdl1s1 |  |-  ( P e. ( Vtx ` G ) -> ( v = <" P "> <-> ( v e. Word ( Vtx ` G ) /\ ( # ` v ) = 1 /\ ( v ` 0 ) = P ) ) ) | 
						
							| 17 |  | df-3an |  |-  ( ( v e. Word ( Vtx ` G ) /\ ( # ` v ) = 1 /\ ( v ` 0 ) = P ) <-> ( ( v e. Word ( Vtx ` G ) /\ ( # ` v ) = 1 ) /\ ( v ` 0 ) = P ) ) | 
						
							| 18 | 16 17 | bitr2di |  |-  ( P e. ( Vtx ` G ) -> ( ( ( v e. Word ( Vtx ` G ) /\ ( # ` v ) = 1 ) /\ ( v ` 0 ) = P ) <-> v = <" P "> ) ) | 
						
							| 19 |  | vex |  |-  v e. _V | 
						
							| 20 |  | eleq1w |  |-  ( w = v -> ( w e. Word ( Vtx ` G ) <-> v e. Word ( Vtx ` G ) ) ) | 
						
							| 21 |  | fveqeq2 |  |-  ( w = v -> ( ( # ` w ) = 1 <-> ( # ` v ) = 1 ) ) | 
						
							| 22 | 20 21 | anbi12d |  |-  ( w = v -> ( ( w e. Word ( Vtx ` G ) /\ ( # ` w ) = 1 ) <-> ( v e. Word ( Vtx ` G ) /\ ( # ` v ) = 1 ) ) ) | 
						
							| 23 |  | fveq1 |  |-  ( w = v -> ( w ` 0 ) = ( v ` 0 ) ) | 
						
							| 24 | 23 | eqeq1d |  |-  ( w = v -> ( ( w ` 0 ) = P <-> ( v ` 0 ) = P ) ) | 
						
							| 25 | 22 24 | anbi12d |  |-  ( w = v -> ( ( ( w e. Word ( Vtx ` G ) /\ ( # ` w ) = 1 ) /\ ( w ` 0 ) = P ) <-> ( ( v e. Word ( Vtx ` G ) /\ ( # ` v ) = 1 ) /\ ( v ` 0 ) = P ) ) ) | 
						
							| 26 | 19 25 | elab |  |-  ( v e. { w | ( ( w e. Word ( Vtx ` G ) /\ ( # ` w ) = 1 ) /\ ( w ` 0 ) = P ) } <-> ( ( v e. Word ( Vtx ` G ) /\ ( # ` v ) = 1 ) /\ ( v ` 0 ) = P ) ) | 
						
							| 27 |  | velsn |  |-  ( v e. { <" P "> } <-> v = <" P "> ) | 
						
							| 28 | 18 26 27 | 3bitr4g |  |-  ( P e. ( Vtx ` G ) -> ( v e. { w | ( ( w e. Word ( Vtx ` G ) /\ ( # ` w ) = 1 ) /\ ( w ` 0 ) = P ) } <-> v e. { <" P "> } ) ) | 
						
							| 29 | 28 1 | eleq2s |  |-  ( P e. V -> ( v e. { w | ( ( w e. Word ( Vtx ` G ) /\ ( # ` w ) = 1 ) /\ ( w ` 0 ) = P ) } <-> v e. { <" P "> } ) ) | 
						
							| 30 | 29 | eqrdv |  |-  ( P e. V -> { w | ( ( w e. Word ( Vtx ` G ) /\ ( # ` w ) = 1 ) /\ ( w ` 0 ) = P ) } = { <" P "> } ) | 
						
							| 31 | 30 | adantl |  |-  ( ( G e. USPGraph /\ P e. V ) -> { w | ( ( w e. Word ( Vtx ` G ) /\ ( # ` w ) = 1 ) /\ ( w ` 0 ) = P ) } = { <" P "> } ) | 
						
							| 32 | 8 15 31 | 3eqtrd |  |-  ( ( G e. USPGraph /\ P e. V ) -> { w e. ( 0 WWalksN G ) | ( w ` 0 ) = P } = { <" P "> } ) | 
						
							| 33 | 32 | fveq2d |  |-  ( ( G e. USPGraph /\ P e. V ) -> ( # ` { w e. ( 0 WWalksN G ) | ( w ` 0 ) = P } ) = ( # ` { <" P "> } ) ) | 
						
							| 34 |  | s1cl |  |-  ( P e. V -> <" P "> e. Word V ) | 
						
							| 35 |  | hashsng |  |-  ( <" P "> e. Word V -> ( # ` { <" P "> } ) = 1 ) | 
						
							| 36 | 34 35 | syl |  |-  ( P e. V -> ( # ` { <" P "> } ) = 1 ) | 
						
							| 37 | 36 | adantl |  |-  ( ( G e. USPGraph /\ P e. V ) -> ( # ` { <" P "> } ) = 1 ) | 
						
							| 38 | 6 33 37 | 3eqtrd |  |-  ( ( G e. USPGraph /\ P e. V ) -> ( P L 0 ) = 1 ) |