Metamath Proof Explorer


Theorem rusgrnumwwlk

Description: In a K-regular graph, the number of walks of a fixed length N from a fixed vertex is K to the power of N . By definition, ( N WWalksN G ) is the set of walks (as words) with length N , and ( P L N ) is the number of walks with length N starting at the vertex P . Because of the K-regularity, a walk can be continued in K different ways at the end vertex of the walk, and this repeated N times.

This theorem even holds for N = 0 : in this case, the walk consists of only one vertex P , so the number of walks of length N = 0 starting with P is ( K ^ 0 ) = 1 . (Contributed by Alexander van der Vekens, 24-Aug-2018) (Revised by AV, 7-May-2021)

Ref Expression
Hypotheses rusgrnumwwlk.v
|- V = ( Vtx ` G )
rusgrnumwwlk.l
|- L = ( v e. V , n e. NN0 |-> ( # ` { w e. ( n WWalksN G ) | ( w ` 0 ) = v } ) )
Assertion rusgrnumwwlk
|- ( ( G RegUSGraph K /\ ( V e. Fin /\ P e. V /\ N e. NN0 ) ) -> ( P L N ) = ( K ^ N ) )

Proof

Step Hyp Ref Expression
1 rusgrnumwwlk.v
 |-  V = ( Vtx ` G )
2 rusgrnumwwlk.l
 |-  L = ( v e. V , n e. NN0 |-> ( # ` { w e. ( n WWalksN G ) | ( w ` 0 ) = v } ) )
3 oveq2
 |-  ( x = 0 -> ( P L x ) = ( P L 0 ) )
4 oveq2
 |-  ( x = 0 -> ( K ^ x ) = ( K ^ 0 ) )
5 3 4 eqeq12d
 |-  ( x = 0 -> ( ( P L x ) = ( K ^ x ) <-> ( P L 0 ) = ( K ^ 0 ) ) )
6 5 imbi2d
 |-  ( x = 0 -> ( ( ( ( V e. Fin /\ P e. V ) /\ G RegUSGraph K ) -> ( P L x ) = ( K ^ x ) ) <-> ( ( ( V e. Fin /\ P e. V ) /\ G RegUSGraph K ) -> ( P L 0 ) = ( K ^ 0 ) ) ) )
7 oveq2
 |-  ( x = y -> ( P L x ) = ( P L y ) )
8 oveq2
 |-  ( x = y -> ( K ^ x ) = ( K ^ y ) )
9 7 8 eqeq12d
 |-  ( x = y -> ( ( P L x ) = ( K ^ x ) <-> ( P L y ) = ( K ^ y ) ) )
10 9 imbi2d
 |-  ( x = y -> ( ( ( ( V e. Fin /\ P e. V ) /\ G RegUSGraph K ) -> ( P L x ) = ( K ^ x ) ) <-> ( ( ( V e. Fin /\ P e. V ) /\ G RegUSGraph K ) -> ( P L y ) = ( K ^ y ) ) ) )
11 oveq2
 |-  ( x = ( y + 1 ) -> ( P L x ) = ( P L ( y + 1 ) ) )
12 oveq2
 |-  ( x = ( y + 1 ) -> ( K ^ x ) = ( K ^ ( y + 1 ) ) )
13 11 12 eqeq12d
 |-  ( x = ( y + 1 ) -> ( ( P L x ) = ( K ^ x ) <-> ( P L ( y + 1 ) ) = ( K ^ ( y + 1 ) ) ) )
14 13 imbi2d
 |-  ( x = ( y + 1 ) -> ( ( ( ( V e. Fin /\ P e. V ) /\ G RegUSGraph K ) -> ( P L x ) = ( K ^ x ) ) <-> ( ( ( V e. Fin /\ P e. V ) /\ G RegUSGraph K ) -> ( P L ( y + 1 ) ) = ( K ^ ( y + 1 ) ) ) ) )
15 oveq2
 |-  ( x = N -> ( P L x ) = ( P L N ) )
16 oveq2
 |-  ( x = N -> ( K ^ x ) = ( K ^ N ) )
17 15 16 eqeq12d
 |-  ( x = N -> ( ( P L x ) = ( K ^ x ) <-> ( P L N ) = ( K ^ N ) ) )
18 17 imbi2d
 |-  ( x = N -> ( ( ( ( V e. Fin /\ P e. V ) /\ G RegUSGraph K ) -> ( P L x ) = ( K ^ x ) ) <-> ( ( ( V e. Fin /\ P e. V ) /\ G RegUSGraph K ) -> ( P L N ) = ( K ^ N ) ) ) )
19 rusgrusgr
 |-  ( G RegUSGraph K -> G e. USGraph )
20 usgruspgr
 |-  ( G e. USGraph -> G e. USPGraph )
21 19 20 syl
 |-  ( G RegUSGraph K -> G e. USPGraph )
22 simpr
 |-  ( ( V e. Fin /\ P e. V ) -> P e. V )
23 1 2 rusgrnumwwlkb0
 |-  ( ( G e. USPGraph /\ P e. V ) -> ( P L 0 ) = 1 )
24 21 22 23 syl2anr
 |-  ( ( ( V e. Fin /\ P e. V ) /\ G RegUSGraph K ) -> ( P L 0 ) = 1 )
25 simpl
 |-  ( ( V e. Fin /\ P e. V ) -> V e. Fin )
26 25 19 anim12ci
 |-  ( ( ( V e. Fin /\ P e. V ) /\ G RegUSGraph K ) -> ( G e. USGraph /\ V e. Fin ) )
27 1 isfusgr
 |-  ( G e. FinUSGraph <-> ( G e. USGraph /\ V e. Fin ) )
28 26 27 sylibr
 |-  ( ( ( V e. Fin /\ P e. V ) /\ G RegUSGraph K ) -> G e. FinUSGraph )
29 simpr
 |-  ( ( ( V e. Fin /\ P e. V ) /\ G RegUSGraph K ) -> G RegUSGraph K )
30 ne0i
 |-  ( P e. V -> V =/= (/) )
31 30 ad2antlr
 |-  ( ( ( V e. Fin /\ P e. V ) /\ G RegUSGraph K ) -> V =/= (/) )
32 1 frusgrnn0
 |-  ( ( G e. FinUSGraph /\ G RegUSGraph K /\ V =/= (/) ) -> K e. NN0 )
33 32 nn0cnd
 |-  ( ( G e. FinUSGraph /\ G RegUSGraph K /\ V =/= (/) ) -> K e. CC )
34 28 29 31 33 syl3anc
 |-  ( ( ( V e. Fin /\ P e. V ) /\ G RegUSGraph K ) -> K e. CC )
35 34 exp0d
 |-  ( ( ( V e. Fin /\ P e. V ) /\ G RegUSGraph K ) -> ( K ^ 0 ) = 1 )
36 24 35 eqtr4d
 |-  ( ( ( V e. Fin /\ P e. V ) /\ G RegUSGraph K ) -> ( P L 0 ) = ( K ^ 0 ) )
37 simpl
 |-  ( ( ( V e. Fin /\ P e. V ) /\ G RegUSGraph K ) -> ( V e. Fin /\ P e. V ) )
38 37 anim1i
 |-  ( ( ( ( V e. Fin /\ P e. V ) /\ G RegUSGraph K ) /\ y e. NN0 ) -> ( ( V e. Fin /\ P e. V ) /\ y e. NN0 ) )
39 df-3an
 |-  ( ( V e. Fin /\ P e. V /\ y e. NN0 ) <-> ( ( V e. Fin /\ P e. V ) /\ y e. NN0 ) )
40 38 39 sylibr
 |-  ( ( ( ( V e. Fin /\ P e. V ) /\ G RegUSGraph K ) /\ y e. NN0 ) -> ( V e. Fin /\ P e. V /\ y e. NN0 ) )
41 1 2 rusgrnumwwlks
 |-  ( ( G RegUSGraph K /\ ( V e. Fin /\ P e. V /\ y e. NN0 ) ) -> ( ( P L y ) = ( K ^ y ) -> ( P L ( y + 1 ) ) = ( K ^ ( y + 1 ) ) ) )
42 29 40 41 syl2an2r
 |-  ( ( ( ( V e. Fin /\ P e. V ) /\ G RegUSGraph K ) /\ y e. NN0 ) -> ( ( P L y ) = ( K ^ y ) -> ( P L ( y + 1 ) ) = ( K ^ ( y + 1 ) ) ) )
43 42 expcom
 |-  ( y e. NN0 -> ( ( ( V e. Fin /\ P e. V ) /\ G RegUSGraph K ) -> ( ( P L y ) = ( K ^ y ) -> ( P L ( y + 1 ) ) = ( K ^ ( y + 1 ) ) ) ) )
44 43 a2d
 |-  ( y e. NN0 -> ( ( ( ( V e. Fin /\ P e. V ) /\ G RegUSGraph K ) -> ( P L y ) = ( K ^ y ) ) -> ( ( ( V e. Fin /\ P e. V ) /\ G RegUSGraph K ) -> ( P L ( y + 1 ) ) = ( K ^ ( y + 1 ) ) ) ) )
45 6 10 14 18 36 44 nn0ind
 |-  ( N e. NN0 -> ( ( ( V e. Fin /\ P e. V ) /\ G RegUSGraph K ) -> ( P L N ) = ( K ^ N ) ) )
46 45 expd
 |-  ( N e. NN0 -> ( ( V e. Fin /\ P e. V ) -> ( G RegUSGraph K -> ( P L N ) = ( K ^ N ) ) ) )
47 46 com12
 |-  ( ( V e. Fin /\ P e. V ) -> ( N e. NN0 -> ( G RegUSGraph K -> ( P L N ) = ( K ^ N ) ) ) )
48 47 3impia
 |-  ( ( V e. Fin /\ P e. V /\ N e. NN0 ) -> ( G RegUSGraph K -> ( P L N ) = ( K ^ N ) ) )
49 48 impcom
 |-  ( ( G RegUSGraph K /\ ( V e. Fin /\ P e. V /\ N e. NN0 ) ) -> ( P L N ) = ( K ^ N ) )