| Step | Hyp | Ref | Expression | 
						
							| 1 |  | frusgrnn0.v |  |-  V = ( Vtx ` G ) | 
						
							| 2 |  | 3simpb |  |-  ( ( G e. FinUSGraph /\ G RegUSGraph K /\ V =/= (/) ) -> ( G e. FinUSGraph /\ V =/= (/) ) ) | 
						
							| 3 |  | eqid |  |-  ( VtxDeg ` G ) = ( VtxDeg ` G ) | 
						
							| 4 | 1 3 | rusgrprop0 |  |-  ( G RegUSGraph K -> ( G e. USGraph /\ K e. NN0* /\ A. v e. V ( ( VtxDeg ` G ) ` v ) = K ) ) | 
						
							| 5 | 4 | simp3d |  |-  ( G RegUSGraph K -> A. v e. V ( ( VtxDeg ` G ) ` v ) = K ) | 
						
							| 6 | 5 | 3ad2ant2 |  |-  ( ( G e. FinUSGraph /\ G RegUSGraph K /\ V =/= (/) ) -> A. v e. V ( ( VtxDeg ` G ) ` v ) = K ) | 
						
							| 7 | 1 3 | fusgrregdegfi |  |-  ( ( G e. FinUSGraph /\ V =/= (/) ) -> ( A. v e. V ( ( VtxDeg ` G ) ` v ) = K -> K e. NN0 ) ) | 
						
							| 8 | 2 6 7 | sylc |  |-  ( ( G e. FinUSGraph /\ G RegUSGraph K /\ V =/= (/) ) -> K e. NN0 ) |