Step |
Hyp |
Ref |
Expression |
1 |
|
frusgrnn0.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
|
3simpb |
⊢ ( ( 𝐺 ∈ FinUSGraph ∧ 𝐺 RegUSGraph 𝐾 ∧ 𝑉 ≠ ∅ ) → ( 𝐺 ∈ FinUSGraph ∧ 𝑉 ≠ ∅ ) ) |
3 |
|
eqid |
⊢ ( VtxDeg ‘ 𝐺 ) = ( VtxDeg ‘ 𝐺 ) |
4 |
1 3
|
rusgrprop0 |
⊢ ( 𝐺 RegUSGraph 𝐾 → ( 𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀ 𝑣 ∈ 𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) = 𝐾 ) ) |
5 |
4
|
simp3d |
⊢ ( 𝐺 RegUSGraph 𝐾 → ∀ 𝑣 ∈ 𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) = 𝐾 ) |
6 |
5
|
3ad2ant2 |
⊢ ( ( 𝐺 ∈ FinUSGraph ∧ 𝐺 RegUSGraph 𝐾 ∧ 𝑉 ≠ ∅ ) → ∀ 𝑣 ∈ 𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) = 𝐾 ) |
7 |
1 3
|
fusgrregdegfi |
⊢ ( ( 𝐺 ∈ FinUSGraph ∧ 𝑉 ≠ ∅ ) → ( ∀ 𝑣 ∈ 𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) = 𝐾 → 𝐾 ∈ ℕ0 ) ) |
8 |
2 6 7
|
sylc |
⊢ ( ( 𝐺 ∈ FinUSGraph ∧ 𝐺 RegUSGraph 𝐾 ∧ 𝑉 ≠ ∅ ) → 𝐾 ∈ ℕ0 ) |