| Step | Hyp | Ref | Expression | 
						
							| 1 |  | frusgrnn0.v | ⊢ 𝑉  =  ( Vtx ‘ 𝐺 ) | 
						
							| 2 |  | 3simpb | ⊢ ( ( 𝐺  ∈  FinUSGraph  ∧  𝐺  RegUSGraph  𝐾  ∧  𝑉  ≠  ∅ )  →  ( 𝐺  ∈  FinUSGraph  ∧  𝑉  ≠  ∅ ) ) | 
						
							| 3 |  | eqid | ⊢ ( VtxDeg ‘ 𝐺 )  =  ( VtxDeg ‘ 𝐺 ) | 
						
							| 4 | 1 3 | rusgrprop0 | ⊢ ( 𝐺  RegUSGraph  𝐾  →  ( 𝐺  ∈  USGraph  ∧  𝐾  ∈  ℕ0*  ∧  ∀ 𝑣  ∈  𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  =  𝐾 ) ) | 
						
							| 5 | 4 | simp3d | ⊢ ( 𝐺  RegUSGraph  𝐾  →  ∀ 𝑣  ∈  𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  =  𝐾 ) | 
						
							| 6 | 5 | 3ad2ant2 | ⊢ ( ( 𝐺  ∈  FinUSGraph  ∧  𝐺  RegUSGraph  𝐾  ∧  𝑉  ≠  ∅ )  →  ∀ 𝑣  ∈  𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  =  𝐾 ) | 
						
							| 7 | 1 3 | fusgrregdegfi | ⊢ ( ( 𝐺  ∈  FinUSGraph  ∧  𝑉  ≠  ∅ )  →  ( ∀ 𝑣  ∈  𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  =  𝐾  →  𝐾  ∈  ℕ0 ) ) | 
						
							| 8 | 2 6 7 | sylc | ⊢ ( ( 𝐺  ∈  FinUSGraph  ∧  𝐺  RegUSGraph  𝐾  ∧  𝑉  ≠  ∅ )  →  𝐾  ∈  ℕ0 ) |