Metamath Proof Explorer


Theorem frusgrnn0

Description: In a nonempty finite k-regular simple graph, the degree of each vertex is finite. (Contributed by AV, 7-May-2021)

Ref Expression
Hypothesis frusgrnn0.v 𝑉 = ( Vtx ‘ 𝐺 )
Assertion frusgrnn0 ( ( 𝐺 ∈ FinUSGraph ∧ 𝐺 RegUSGraph 𝐾𝑉 ≠ ∅ ) → 𝐾 ∈ ℕ0 )

Proof

Step Hyp Ref Expression
1 frusgrnn0.v 𝑉 = ( Vtx ‘ 𝐺 )
2 3simpb ( ( 𝐺 ∈ FinUSGraph ∧ 𝐺 RegUSGraph 𝐾𝑉 ≠ ∅ ) → ( 𝐺 ∈ FinUSGraph ∧ 𝑉 ≠ ∅ ) )
3 eqid ( VtxDeg ‘ 𝐺 ) = ( VtxDeg ‘ 𝐺 )
4 1 3 rusgrprop0 ( 𝐺 RegUSGraph 𝐾 → ( 𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀ 𝑣𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) = 𝐾 ) )
5 4 simp3d ( 𝐺 RegUSGraph 𝐾 → ∀ 𝑣𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) = 𝐾 )
6 5 3ad2ant2 ( ( 𝐺 ∈ FinUSGraph ∧ 𝐺 RegUSGraph 𝐾𝑉 ≠ ∅ ) → ∀ 𝑣𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) = 𝐾 )
7 1 3 fusgrregdegfi ( ( 𝐺 ∈ FinUSGraph ∧ 𝑉 ≠ ∅ ) → ( ∀ 𝑣𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) = 𝐾𝐾 ∈ ℕ0 ) )
8 2 6 7 sylc ( ( 𝐺 ∈ FinUSGraph ∧ 𝐺 RegUSGraph 𝐾𝑉 ≠ ∅ ) → 𝐾 ∈ ℕ0 )