| Step | Hyp | Ref | Expression | 
						
							| 1 |  | isrusgr0.v | ⊢ 𝑉  =  ( Vtx ‘ 𝐺 ) | 
						
							| 2 |  | isrusgr0.d | ⊢ 𝐷  =  ( VtxDeg ‘ 𝐺 ) | 
						
							| 3 | 1 | vtxdgfusgr | ⊢ ( 𝐺  ∈  FinUSGraph  →  ∀ 𝑣  ∈  𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  ∈  ℕ0 ) | 
						
							| 4 |  | r19.26 | ⊢ ( ∀ 𝑣  ∈  𝑉 ( ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  ∈  ℕ0  ∧  ( 𝐷 ‘ 𝑣 )  =  𝐾 )  ↔  ( ∀ 𝑣  ∈  𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  ∈  ℕ0  ∧  ∀ 𝑣  ∈  𝑉 ( 𝐷 ‘ 𝑣 )  =  𝐾 ) ) | 
						
							| 5 | 2 | fveq1i | ⊢ ( 𝐷 ‘ 𝑣 )  =  ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) | 
						
							| 6 | 5 | eqeq1i | ⊢ ( ( 𝐷 ‘ 𝑣 )  =  𝐾  ↔  ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  =  𝐾 ) | 
						
							| 7 |  | eleq1 | ⊢ ( ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  =  𝐾  →  ( ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  ∈  ℕ0  ↔  𝐾  ∈  ℕ0 ) ) | 
						
							| 8 | 6 7 | sylbi | ⊢ ( ( 𝐷 ‘ 𝑣 )  =  𝐾  →  ( ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  ∈  ℕ0  ↔  𝐾  ∈  ℕ0 ) ) | 
						
							| 9 | 8 | biimpac | ⊢ ( ( ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  ∈  ℕ0  ∧  ( 𝐷 ‘ 𝑣 )  =  𝐾 )  →  𝐾  ∈  ℕ0 ) | 
						
							| 10 | 9 | ralimi | ⊢ ( ∀ 𝑣  ∈  𝑉 ( ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  ∈  ℕ0  ∧  ( 𝐷 ‘ 𝑣 )  =  𝐾 )  →  ∀ 𝑣  ∈  𝑉 𝐾  ∈  ℕ0 ) | 
						
							| 11 |  | rspn0 | ⊢ ( 𝑉  ≠  ∅  →  ( ∀ 𝑣  ∈  𝑉 𝐾  ∈  ℕ0  →  𝐾  ∈  ℕ0 ) ) | 
						
							| 12 | 10 11 | syl5com | ⊢ ( ∀ 𝑣  ∈  𝑉 ( ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  ∈  ℕ0  ∧  ( 𝐷 ‘ 𝑣 )  =  𝐾 )  →  ( 𝑉  ≠  ∅  →  𝐾  ∈  ℕ0 ) ) | 
						
							| 13 | 4 12 | sylbir | ⊢ ( ( ∀ 𝑣  ∈  𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  ∈  ℕ0  ∧  ∀ 𝑣  ∈  𝑉 ( 𝐷 ‘ 𝑣 )  =  𝐾 )  →  ( 𝑉  ≠  ∅  →  𝐾  ∈  ℕ0 ) ) | 
						
							| 14 | 13 | ex | ⊢ ( ∀ 𝑣  ∈  𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  ∈  ℕ0  →  ( ∀ 𝑣  ∈  𝑉 ( 𝐷 ‘ 𝑣 )  =  𝐾  →  ( 𝑉  ≠  ∅  →  𝐾  ∈  ℕ0 ) ) ) | 
						
							| 15 | 14 | com23 | ⊢ ( ∀ 𝑣  ∈  𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  ∈  ℕ0  →  ( 𝑉  ≠  ∅  →  ( ∀ 𝑣  ∈  𝑉 ( 𝐷 ‘ 𝑣 )  =  𝐾  →  𝐾  ∈  ℕ0 ) ) ) | 
						
							| 16 | 3 15 | syl | ⊢ ( 𝐺  ∈  FinUSGraph  →  ( 𝑉  ≠  ∅  →  ( ∀ 𝑣  ∈  𝑉 ( 𝐷 ‘ 𝑣 )  =  𝐾  →  𝐾  ∈  ℕ0 ) ) ) | 
						
							| 17 | 16 | imp | ⊢ ( ( 𝐺  ∈  FinUSGraph  ∧  𝑉  ≠  ∅ )  →  ( ∀ 𝑣  ∈  𝑉 ( 𝐷 ‘ 𝑣 )  =  𝐾  →  𝐾  ∈  ℕ0 ) ) |