Metamath Proof Explorer


Theorem fusgrregdegfi

Description: In a nonempty finite simple graph, the degree of each vertex is finite. (Contributed by Alexander van der Vekens, 6-Mar-2018) (Revised by AV, 19-Dec-2020)

Ref Expression
Hypotheses isrusgr0.v V=VtxG
isrusgr0.d D=VtxDegG
Assertion fusgrregdegfi GFinUSGraphVvVDv=KK0

Proof

Step Hyp Ref Expression
1 isrusgr0.v V=VtxG
2 isrusgr0.d D=VtxDegG
3 1 vtxdgfusgr GFinUSGraphvVVtxDegGv0
4 r19.26 vVVtxDegGv0Dv=KvVVtxDegGv0vVDv=K
5 2 fveq1i Dv=VtxDegGv
6 5 eqeq1i Dv=KVtxDegGv=K
7 eleq1 VtxDegGv=KVtxDegGv0K0
8 6 7 sylbi Dv=KVtxDegGv0K0
9 8 biimpac VtxDegGv0Dv=KK0
10 9 ralimi vVVtxDegGv0Dv=KvVK0
11 rspn0 VvVK0K0
12 10 11 syl5com vVVtxDegGv0Dv=KVK0
13 4 12 sylbir vVVtxDegGv0vVDv=KVK0
14 13 ex vVVtxDegGv0vVDv=KVK0
15 14 com23 vVVtxDegGv0VvVDv=KK0
16 3 15 syl GFinUSGraphVvVDv=KK0
17 16 imp GFinUSGraphVvVDv=KK0