| Step | Hyp | Ref | Expression | 
						
							| 1 |  | isrusgr0.v | ⊢ 𝑉  =  ( Vtx ‘ 𝐺 ) | 
						
							| 2 |  | isrusgr0.d | ⊢ 𝐷  =  ( VtxDeg ‘ 𝐺 ) | 
						
							| 3 |  | fusgrusgr | ⊢ ( 𝐺  ∈  FinUSGraph  →  𝐺  ∈  USGraph ) | 
						
							| 4 | 3 | ad2antrr | ⊢ ( ( ( 𝐺  ∈  FinUSGraph  ∧  𝑉  ≠  ∅ )  ∧  ∀ 𝑣  ∈  𝑉 ( 𝐷 ‘ 𝑣 )  =  𝐾 )  →  𝐺  ∈  USGraph ) | 
						
							| 5 | 1 2 | fusgrregdegfi | ⊢ ( ( 𝐺  ∈  FinUSGraph  ∧  𝑉  ≠  ∅ )  →  ( ∀ 𝑣  ∈  𝑉 ( 𝐷 ‘ 𝑣 )  =  𝐾  →  𝐾  ∈  ℕ0 ) ) | 
						
							| 6 | 5 | imp | ⊢ ( ( ( 𝐺  ∈  FinUSGraph  ∧  𝑉  ≠  ∅ )  ∧  ∀ 𝑣  ∈  𝑉 ( 𝐷 ‘ 𝑣 )  =  𝐾 )  →  𝐾  ∈  ℕ0 ) | 
						
							| 7 | 6 | nn0xnn0d | ⊢ ( ( ( 𝐺  ∈  FinUSGraph  ∧  𝑉  ≠  ∅ )  ∧  ∀ 𝑣  ∈  𝑉 ( 𝐷 ‘ 𝑣 )  =  𝐾 )  →  𝐾  ∈  ℕ0* ) | 
						
							| 8 |  | simpr | ⊢ ( ( ( 𝐺  ∈  FinUSGraph  ∧  𝑉  ≠  ∅ )  ∧  ∀ 𝑣  ∈  𝑉 ( 𝐷 ‘ 𝑣 )  =  𝐾 )  →  ∀ 𝑣  ∈  𝑉 ( 𝐷 ‘ 𝑣 )  =  𝐾 ) | 
						
							| 9 | 1 2 | usgreqdrusgr | ⊢ ( ( 𝐺  ∈  USGraph  ∧  𝐾  ∈  ℕ0*  ∧  ∀ 𝑣  ∈  𝑉 ( 𝐷 ‘ 𝑣 )  =  𝐾 )  →  𝐺  RegUSGraph  𝐾 ) | 
						
							| 10 | 4 7 8 9 | syl3anc | ⊢ ( ( ( 𝐺  ∈  FinUSGraph  ∧  𝑉  ≠  ∅ )  ∧  ∀ 𝑣  ∈  𝑉 ( 𝐷 ‘ 𝑣 )  =  𝐾 )  →  𝐺  RegUSGraph  𝐾 ) | 
						
							| 11 | 10 | ex | ⊢ ( ( 𝐺  ∈  FinUSGraph  ∧  𝑉  ≠  ∅ )  →  ( ∀ 𝑣  ∈  𝑉 ( 𝐷 ‘ 𝑣 )  =  𝐾  →  𝐺  RegUSGraph  𝐾 ) ) |