Step |
Hyp |
Ref |
Expression |
1 |
|
isrusgr0.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
|
isrusgr0.d |
⊢ 𝐷 = ( VtxDeg ‘ 𝐺 ) |
3 |
|
fusgrusgr |
⊢ ( 𝐺 ∈ FinUSGraph → 𝐺 ∈ USGraph ) |
4 |
3
|
ad2antrr |
⊢ ( ( ( 𝐺 ∈ FinUSGraph ∧ 𝑉 ≠ ∅ ) ∧ ∀ 𝑣 ∈ 𝑉 ( 𝐷 ‘ 𝑣 ) = 𝐾 ) → 𝐺 ∈ USGraph ) |
5 |
1 2
|
fusgrregdegfi |
⊢ ( ( 𝐺 ∈ FinUSGraph ∧ 𝑉 ≠ ∅ ) → ( ∀ 𝑣 ∈ 𝑉 ( 𝐷 ‘ 𝑣 ) = 𝐾 → 𝐾 ∈ ℕ0 ) ) |
6 |
5
|
imp |
⊢ ( ( ( 𝐺 ∈ FinUSGraph ∧ 𝑉 ≠ ∅ ) ∧ ∀ 𝑣 ∈ 𝑉 ( 𝐷 ‘ 𝑣 ) = 𝐾 ) → 𝐾 ∈ ℕ0 ) |
7 |
6
|
nn0xnn0d |
⊢ ( ( ( 𝐺 ∈ FinUSGraph ∧ 𝑉 ≠ ∅ ) ∧ ∀ 𝑣 ∈ 𝑉 ( 𝐷 ‘ 𝑣 ) = 𝐾 ) → 𝐾 ∈ ℕ0* ) |
8 |
|
simpr |
⊢ ( ( ( 𝐺 ∈ FinUSGraph ∧ 𝑉 ≠ ∅ ) ∧ ∀ 𝑣 ∈ 𝑉 ( 𝐷 ‘ 𝑣 ) = 𝐾 ) → ∀ 𝑣 ∈ 𝑉 ( 𝐷 ‘ 𝑣 ) = 𝐾 ) |
9 |
1 2
|
usgreqdrusgr |
⊢ ( ( 𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀ 𝑣 ∈ 𝑉 ( 𝐷 ‘ 𝑣 ) = 𝐾 ) → 𝐺 RegUSGraph 𝐾 ) |
10 |
4 7 8 9
|
syl3anc |
⊢ ( ( ( 𝐺 ∈ FinUSGraph ∧ 𝑉 ≠ ∅ ) ∧ ∀ 𝑣 ∈ 𝑉 ( 𝐷 ‘ 𝑣 ) = 𝐾 ) → 𝐺 RegUSGraph 𝐾 ) |
11 |
10
|
ex |
⊢ ( ( 𝐺 ∈ FinUSGraph ∧ 𝑉 ≠ ∅ ) → ( ∀ 𝑣 ∈ 𝑉 ( 𝐷 ‘ 𝑣 ) = 𝐾 → 𝐺 RegUSGraph 𝐾 ) ) |