Metamath Proof Explorer


Theorem fusgrn0eqdrusgr

Description: If all vertices in a nonempty finite simple graph have the same (finite) degree, the graph is k-regular. (Contributed by AV, 26-Dec-2020)

Ref Expression
Hypotheses isrusgr0.v 𝑉 = ( Vtx ‘ 𝐺 )
isrusgr0.d 𝐷 = ( VtxDeg ‘ 𝐺 )
Assertion fusgrn0eqdrusgr ( ( 𝐺 ∈ FinUSGraph ∧ 𝑉 ≠ ∅ ) → ( ∀ 𝑣𝑉 ( 𝐷𝑣 ) = 𝐾𝐺 RegUSGraph 𝐾 ) )

Proof

Step Hyp Ref Expression
1 isrusgr0.v 𝑉 = ( Vtx ‘ 𝐺 )
2 isrusgr0.d 𝐷 = ( VtxDeg ‘ 𝐺 )
3 fusgrusgr ( 𝐺 ∈ FinUSGraph → 𝐺 ∈ USGraph )
4 3 ad2antrr ( ( ( 𝐺 ∈ FinUSGraph ∧ 𝑉 ≠ ∅ ) ∧ ∀ 𝑣𝑉 ( 𝐷𝑣 ) = 𝐾 ) → 𝐺 ∈ USGraph )
5 1 2 fusgrregdegfi ( ( 𝐺 ∈ FinUSGraph ∧ 𝑉 ≠ ∅ ) → ( ∀ 𝑣𝑉 ( 𝐷𝑣 ) = 𝐾𝐾 ∈ ℕ0 ) )
6 5 imp ( ( ( 𝐺 ∈ FinUSGraph ∧ 𝑉 ≠ ∅ ) ∧ ∀ 𝑣𝑉 ( 𝐷𝑣 ) = 𝐾 ) → 𝐾 ∈ ℕ0 )
7 6 nn0xnn0d ( ( ( 𝐺 ∈ FinUSGraph ∧ 𝑉 ≠ ∅ ) ∧ ∀ 𝑣𝑉 ( 𝐷𝑣 ) = 𝐾 ) → 𝐾 ∈ ℕ0* )
8 simpr ( ( ( 𝐺 ∈ FinUSGraph ∧ 𝑉 ≠ ∅ ) ∧ ∀ 𝑣𝑉 ( 𝐷𝑣 ) = 𝐾 ) → ∀ 𝑣𝑉 ( 𝐷𝑣 ) = 𝐾 )
9 1 2 usgreqdrusgr ( ( 𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀ 𝑣𝑉 ( 𝐷𝑣 ) = 𝐾 ) → 𝐺 RegUSGraph 𝐾 )
10 4 7 8 9 syl3anc ( ( ( 𝐺 ∈ FinUSGraph ∧ 𝑉 ≠ ∅ ) ∧ ∀ 𝑣𝑉 ( 𝐷𝑣 ) = 𝐾 ) → 𝐺 RegUSGraph 𝐾 )
11 10 ex ( ( 𝐺 ∈ FinUSGraph ∧ 𝑉 ≠ ∅ ) → ( ∀ 𝑣𝑉 ( 𝐷𝑣 ) = 𝐾𝐺 RegUSGraph 𝐾 ) )