Step |
Hyp |
Ref |
Expression |
1 |
|
isrusgr0.v |
|- V = ( Vtx ` G ) |
2 |
|
isrusgr0.d |
|- D = ( VtxDeg ` G ) |
3 |
|
fusgrusgr |
|- ( G e. FinUSGraph -> G e. USGraph ) |
4 |
3
|
ad2antrr |
|- ( ( ( G e. FinUSGraph /\ V =/= (/) ) /\ A. v e. V ( D ` v ) = K ) -> G e. USGraph ) |
5 |
1 2
|
fusgrregdegfi |
|- ( ( G e. FinUSGraph /\ V =/= (/) ) -> ( A. v e. V ( D ` v ) = K -> K e. NN0 ) ) |
6 |
5
|
imp |
|- ( ( ( G e. FinUSGraph /\ V =/= (/) ) /\ A. v e. V ( D ` v ) = K ) -> K e. NN0 ) |
7 |
6
|
nn0xnn0d |
|- ( ( ( G e. FinUSGraph /\ V =/= (/) ) /\ A. v e. V ( D ` v ) = K ) -> K e. NN0* ) |
8 |
|
simpr |
|- ( ( ( G e. FinUSGraph /\ V =/= (/) ) /\ A. v e. V ( D ` v ) = K ) -> A. v e. V ( D ` v ) = K ) |
9 |
1 2
|
usgreqdrusgr |
|- ( ( G e. USGraph /\ K e. NN0* /\ A. v e. V ( D ` v ) = K ) -> G RegUSGraph K ) |
10 |
4 7 8 9
|
syl3anc |
|- ( ( ( G e. FinUSGraph /\ V =/= (/) ) /\ A. v e. V ( D ` v ) = K ) -> G RegUSGraph K ) |
11 |
10
|
ex |
|- ( ( G e. FinUSGraph /\ V =/= (/) ) -> ( A. v e. V ( D ` v ) = K -> G RegUSGraph K ) ) |