| Step | Hyp | Ref | Expression | 
						
							| 1 |  | isrusgr0.v |  |-  V = ( Vtx ` G ) | 
						
							| 2 |  | isrusgr0.d |  |-  D = ( VtxDeg ` G ) | 
						
							| 3 |  | fusgrusgr |  |-  ( G e. FinUSGraph -> G e. USGraph ) | 
						
							| 4 | 3 | ad2antrr |  |-  ( ( ( G e. FinUSGraph /\ V =/= (/) ) /\ A. v e. V ( D ` v ) = K ) -> G e. USGraph ) | 
						
							| 5 | 1 2 | fusgrregdegfi |  |-  ( ( G e. FinUSGraph /\ V =/= (/) ) -> ( A. v e. V ( D ` v ) = K -> K e. NN0 ) ) | 
						
							| 6 | 5 | imp |  |-  ( ( ( G e. FinUSGraph /\ V =/= (/) ) /\ A. v e. V ( D ` v ) = K ) -> K e. NN0 ) | 
						
							| 7 | 6 | nn0xnn0d |  |-  ( ( ( G e. FinUSGraph /\ V =/= (/) ) /\ A. v e. V ( D ` v ) = K ) -> K e. NN0* ) | 
						
							| 8 |  | simpr |  |-  ( ( ( G e. FinUSGraph /\ V =/= (/) ) /\ A. v e. V ( D ` v ) = K ) -> A. v e. V ( D ` v ) = K ) | 
						
							| 9 | 1 2 | usgreqdrusgr |  |-  ( ( G e. USGraph /\ K e. NN0* /\ A. v e. V ( D ` v ) = K ) -> G RegUSGraph K ) | 
						
							| 10 | 4 7 8 9 | syl3anc |  |-  ( ( ( G e. FinUSGraph /\ V =/= (/) ) /\ A. v e. V ( D ` v ) = K ) -> G RegUSGraph K ) | 
						
							| 11 | 10 | ex |  |-  ( ( G e. FinUSGraph /\ V =/= (/) ) -> ( A. v e. V ( D ` v ) = K -> G RegUSGraph K ) ) |