| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 0nn0 |  |-  0 e. NN0 | 
						
							| 2 |  | wwlksn |  |-  ( 0 e. NN0 -> ( 0 WWalksN G ) = { w e. ( WWalks ` G ) | ( # ` w ) = ( 0 + 1 ) } ) | 
						
							| 3 |  | eqid |  |-  ( Vtx ` G ) = ( Vtx ` G ) | 
						
							| 4 |  | eqid |  |-  ( Edg ` G ) = ( Edg ` G ) | 
						
							| 5 | 3 4 | iswwlks |  |-  ( w e. ( WWalks ` G ) <-> ( w =/= (/) /\ w e. Word ( Vtx ` G ) /\ A. i e. ( 0 ..^ ( ( # ` w ) - 1 ) ) { ( w ` i ) , ( w ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) | 
						
							| 6 |  | 0p1e1 |  |-  ( 0 + 1 ) = 1 | 
						
							| 7 | 6 | eqeq2i |  |-  ( ( # ` w ) = ( 0 + 1 ) <-> ( # ` w ) = 1 ) | 
						
							| 8 | 5 7 | anbi12i |  |-  ( ( w e. ( WWalks ` G ) /\ ( # ` w ) = ( 0 + 1 ) ) <-> ( ( w =/= (/) /\ w e. Word ( Vtx ` G ) /\ A. i e. ( 0 ..^ ( ( # ` w ) - 1 ) ) { ( w ` i ) , ( w ` ( i + 1 ) ) } e. ( Edg ` G ) ) /\ ( # ` w ) = 1 ) ) | 
						
							| 9 |  | simp2 |  |-  ( ( w =/= (/) /\ w e. Word ( Vtx ` G ) /\ A. i e. ( 0 ..^ ( ( # ` w ) - 1 ) ) { ( w ` i ) , ( w ` ( i + 1 ) ) } e. ( Edg ` G ) ) -> w e. Word ( Vtx ` G ) ) | 
						
							| 10 |  | vex |  |-  w e. _V | 
						
							| 11 |  | 0lt1 |  |-  0 < 1 | 
						
							| 12 |  | breq2 |  |-  ( ( # ` w ) = 1 -> ( 0 < ( # ` w ) <-> 0 < 1 ) ) | 
						
							| 13 | 11 12 | mpbiri |  |-  ( ( # ` w ) = 1 -> 0 < ( # ` w ) ) | 
						
							| 14 |  | hashgt0n0 |  |-  ( ( w e. _V /\ 0 < ( # ` w ) ) -> w =/= (/) ) | 
						
							| 15 | 10 13 14 | sylancr |  |-  ( ( # ` w ) = 1 -> w =/= (/) ) | 
						
							| 16 | 15 | adantr |  |-  ( ( ( # ` w ) = 1 /\ w e. Word ( Vtx ` G ) ) -> w =/= (/) ) | 
						
							| 17 |  | simpr |  |-  ( ( ( # ` w ) = 1 /\ w e. Word ( Vtx ` G ) ) -> w e. Word ( Vtx ` G ) ) | 
						
							| 18 |  | ral0 |  |-  A. i e. (/) { ( w ` i ) , ( w ` ( i + 1 ) ) } e. ( Edg ` G ) | 
						
							| 19 |  | oveq1 |  |-  ( ( # ` w ) = 1 -> ( ( # ` w ) - 1 ) = ( 1 - 1 ) ) | 
						
							| 20 |  | 1m1e0 |  |-  ( 1 - 1 ) = 0 | 
						
							| 21 | 19 20 | eqtrdi |  |-  ( ( # ` w ) = 1 -> ( ( # ` w ) - 1 ) = 0 ) | 
						
							| 22 | 21 | oveq2d |  |-  ( ( # ` w ) = 1 -> ( 0 ..^ ( ( # ` w ) - 1 ) ) = ( 0 ..^ 0 ) ) | 
						
							| 23 |  | fzo0 |  |-  ( 0 ..^ 0 ) = (/) | 
						
							| 24 | 22 23 | eqtrdi |  |-  ( ( # ` w ) = 1 -> ( 0 ..^ ( ( # ` w ) - 1 ) ) = (/) ) | 
						
							| 25 | 24 | raleqdv |  |-  ( ( # ` w ) = 1 -> ( A. i e. ( 0 ..^ ( ( # ` w ) - 1 ) ) { ( w ` i ) , ( w ` ( i + 1 ) ) } e. ( Edg ` G ) <-> A. i e. (/) { ( w ` i ) , ( w ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) | 
						
							| 26 | 18 25 | mpbiri |  |-  ( ( # ` w ) = 1 -> A. i e. ( 0 ..^ ( ( # ` w ) - 1 ) ) { ( w ` i ) , ( w ` ( i + 1 ) ) } e. ( Edg ` G ) ) | 
						
							| 27 | 26 | adantr |  |-  ( ( ( # ` w ) = 1 /\ w e. Word ( Vtx ` G ) ) -> A. i e. ( 0 ..^ ( ( # ` w ) - 1 ) ) { ( w ` i ) , ( w ` ( i + 1 ) ) } e. ( Edg ` G ) ) | 
						
							| 28 | 16 17 27 | 3jca |  |-  ( ( ( # ` w ) = 1 /\ w e. Word ( Vtx ` G ) ) -> ( w =/= (/) /\ w e. Word ( Vtx ` G ) /\ A. i e. ( 0 ..^ ( ( # ` w ) - 1 ) ) { ( w ` i ) , ( w ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) | 
						
							| 29 | 28 | ex |  |-  ( ( # ` w ) = 1 -> ( w e. Word ( Vtx ` G ) -> ( w =/= (/) /\ w e. Word ( Vtx ` G ) /\ A. i e. ( 0 ..^ ( ( # ` w ) - 1 ) ) { ( w ` i ) , ( w ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) ) | 
						
							| 30 | 9 29 | impbid2 |  |-  ( ( # ` w ) = 1 -> ( ( w =/= (/) /\ w e. Word ( Vtx ` G ) /\ A. i e. ( 0 ..^ ( ( # ` w ) - 1 ) ) { ( w ` i ) , ( w ` ( i + 1 ) ) } e. ( Edg ` G ) ) <-> w e. Word ( Vtx ` G ) ) ) | 
						
							| 31 | 30 | pm5.32ri |  |-  ( ( ( w =/= (/) /\ w e. Word ( Vtx ` G ) /\ A. i e. ( 0 ..^ ( ( # ` w ) - 1 ) ) { ( w ` i ) , ( w ` ( i + 1 ) ) } e. ( Edg ` G ) ) /\ ( # ` w ) = 1 ) <-> ( w e. Word ( Vtx ` G ) /\ ( # ` w ) = 1 ) ) | 
						
							| 32 | 8 31 | bitri |  |-  ( ( w e. ( WWalks ` G ) /\ ( # ` w ) = ( 0 + 1 ) ) <-> ( w e. Word ( Vtx ` G ) /\ ( # ` w ) = 1 ) ) | 
						
							| 33 | 32 | a1i |  |-  ( 0 e. NN0 -> ( ( w e. ( WWalks ` G ) /\ ( # ` w ) = ( 0 + 1 ) ) <-> ( w e. Word ( Vtx ` G ) /\ ( # ` w ) = 1 ) ) ) | 
						
							| 34 | 33 | rabbidva2 |  |-  ( 0 e. NN0 -> { w e. ( WWalks ` G ) | ( # ` w ) = ( 0 + 1 ) } = { w e. Word ( Vtx ` G ) | ( # ` w ) = 1 } ) | 
						
							| 35 | 2 34 | eqtrd |  |-  ( 0 e. NN0 -> ( 0 WWalksN G ) = { w e. Word ( Vtx ` G ) | ( # ` w ) = 1 } ) | 
						
							| 36 | 1 35 | ax-mp |  |-  ( 0 WWalksN G ) = { w e. Word ( Vtx ` G ) | ( # ` w ) = 1 } |