| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 0nn0 | ⊢ 0  ∈  ℕ0 | 
						
							| 2 |  | wwlksn | ⊢ ( 0  ∈  ℕ0  →  ( 0  WWalksN  𝐺 )  =  { 𝑤  ∈  ( WWalks ‘ 𝐺 )  ∣  ( ♯ ‘ 𝑤 )  =  ( 0  +  1 ) } ) | 
						
							| 3 |  | eqid | ⊢ ( Vtx ‘ 𝐺 )  =  ( Vtx ‘ 𝐺 ) | 
						
							| 4 |  | eqid | ⊢ ( Edg ‘ 𝐺 )  =  ( Edg ‘ 𝐺 ) | 
						
							| 5 | 3 4 | iswwlks | ⊢ ( 𝑤  ∈  ( WWalks ‘ 𝐺 )  ↔  ( 𝑤  ≠  ∅  ∧  𝑤  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑤 )  −  1 ) ) { ( 𝑤 ‘ 𝑖 ) ,  ( 𝑤 ‘ ( 𝑖  +  1 ) ) }  ∈  ( Edg ‘ 𝐺 ) ) ) | 
						
							| 6 |  | 0p1e1 | ⊢ ( 0  +  1 )  =  1 | 
						
							| 7 | 6 | eqeq2i | ⊢ ( ( ♯ ‘ 𝑤 )  =  ( 0  +  1 )  ↔  ( ♯ ‘ 𝑤 )  =  1 ) | 
						
							| 8 | 5 7 | anbi12i | ⊢ ( ( 𝑤  ∈  ( WWalks ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑤 )  =  ( 0  +  1 ) )  ↔  ( ( 𝑤  ≠  ∅  ∧  𝑤  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑤 )  −  1 ) ) { ( 𝑤 ‘ 𝑖 ) ,  ( 𝑤 ‘ ( 𝑖  +  1 ) ) }  ∈  ( Edg ‘ 𝐺 ) )  ∧  ( ♯ ‘ 𝑤 )  =  1 ) ) | 
						
							| 9 |  | simp2 | ⊢ ( ( 𝑤  ≠  ∅  ∧  𝑤  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑤 )  −  1 ) ) { ( 𝑤 ‘ 𝑖 ) ,  ( 𝑤 ‘ ( 𝑖  +  1 ) ) }  ∈  ( Edg ‘ 𝐺 ) )  →  𝑤  ∈  Word  ( Vtx ‘ 𝐺 ) ) | 
						
							| 10 |  | vex | ⊢ 𝑤  ∈  V | 
						
							| 11 |  | 0lt1 | ⊢ 0  <  1 | 
						
							| 12 |  | breq2 | ⊢ ( ( ♯ ‘ 𝑤 )  =  1  →  ( 0  <  ( ♯ ‘ 𝑤 )  ↔  0  <  1 ) ) | 
						
							| 13 | 11 12 | mpbiri | ⊢ ( ( ♯ ‘ 𝑤 )  =  1  →  0  <  ( ♯ ‘ 𝑤 ) ) | 
						
							| 14 |  | hashgt0n0 | ⊢ ( ( 𝑤  ∈  V  ∧  0  <  ( ♯ ‘ 𝑤 ) )  →  𝑤  ≠  ∅ ) | 
						
							| 15 | 10 13 14 | sylancr | ⊢ ( ( ♯ ‘ 𝑤 )  =  1  →  𝑤  ≠  ∅ ) | 
						
							| 16 | 15 | adantr | ⊢ ( ( ( ♯ ‘ 𝑤 )  =  1  ∧  𝑤  ∈  Word  ( Vtx ‘ 𝐺 ) )  →  𝑤  ≠  ∅ ) | 
						
							| 17 |  | simpr | ⊢ ( ( ( ♯ ‘ 𝑤 )  =  1  ∧  𝑤  ∈  Word  ( Vtx ‘ 𝐺 ) )  →  𝑤  ∈  Word  ( Vtx ‘ 𝐺 ) ) | 
						
							| 18 |  | ral0 | ⊢ ∀ 𝑖  ∈  ∅ { ( 𝑤 ‘ 𝑖 ) ,  ( 𝑤 ‘ ( 𝑖  +  1 ) ) }  ∈  ( Edg ‘ 𝐺 ) | 
						
							| 19 |  | oveq1 | ⊢ ( ( ♯ ‘ 𝑤 )  =  1  →  ( ( ♯ ‘ 𝑤 )  −  1 )  =  ( 1  −  1 ) ) | 
						
							| 20 |  | 1m1e0 | ⊢ ( 1  −  1 )  =  0 | 
						
							| 21 | 19 20 | eqtrdi | ⊢ ( ( ♯ ‘ 𝑤 )  =  1  →  ( ( ♯ ‘ 𝑤 )  −  1 )  =  0 ) | 
						
							| 22 | 21 | oveq2d | ⊢ ( ( ♯ ‘ 𝑤 )  =  1  →  ( 0 ..^ ( ( ♯ ‘ 𝑤 )  −  1 ) )  =  ( 0 ..^ 0 ) ) | 
						
							| 23 |  | fzo0 | ⊢ ( 0 ..^ 0 )  =  ∅ | 
						
							| 24 | 22 23 | eqtrdi | ⊢ ( ( ♯ ‘ 𝑤 )  =  1  →  ( 0 ..^ ( ( ♯ ‘ 𝑤 )  −  1 ) )  =  ∅ ) | 
						
							| 25 | 24 | raleqdv | ⊢ ( ( ♯ ‘ 𝑤 )  =  1  →  ( ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑤 )  −  1 ) ) { ( 𝑤 ‘ 𝑖 ) ,  ( 𝑤 ‘ ( 𝑖  +  1 ) ) }  ∈  ( Edg ‘ 𝐺 )  ↔  ∀ 𝑖  ∈  ∅ { ( 𝑤 ‘ 𝑖 ) ,  ( 𝑤 ‘ ( 𝑖  +  1 ) ) }  ∈  ( Edg ‘ 𝐺 ) ) ) | 
						
							| 26 | 18 25 | mpbiri | ⊢ ( ( ♯ ‘ 𝑤 )  =  1  →  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑤 )  −  1 ) ) { ( 𝑤 ‘ 𝑖 ) ,  ( 𝑤 ‘ ( 𝑖  +  1 ) ) }  ∈  ( Edg ‘ 𝐺 ) ) | 
						
							| 27 | 26 | adantr | ⊢ ( ( ( ♯ ‘ 𝑤 )  =  1  ∧  𝑤  ∈  Word  ( Vtx ‘ 𝐺 ) )  →  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑤 )  −  1 ) ) { ( 𝑤 ‘ 𝑖 ) ,  ( 𝑤 ‘ ( 𝑖  +  1 ) ) }  ∈  ( Edg ‘ 𝐺 ) ) | 
						
							| 28 | 16 17 27 | 3jca | ⊢ ( ( ( ♯ ‘ 𝑤 )  =  1  ∧  𝑤  ∈  Word  ( Vtx ‘ 𝐺 ) )  →  ( 𝑤  ≠  ∅  ∧  𝑤  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑤 )  −  1 ) ) { ( 𝑤 ‘ 𝑖 ) ,  ( 𝑤 ‘ ( 𝑖  +  1 ) ) }  ∈  ( Edg ‘ 𝐺 ) ) ) | 
						
							| 29 | 28 | ex | ⊢ ( ( ♯ ‘ 𝑤 )  =  1  →  ( 𝑤  ∈  Word  ( Vtx ‘ 𝐺 )  →  ( 𝑤  ≠  ∅  ∧  𝑤  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑤 )  −  1 ) ) { ( 𝑤 ‘ 𝑖 ) ,  ( 𝑤 ‘ ( 𝑖  +  1 ) ) }  ∈  ( Edg ‘ 𝐺 ) ) ) ) | 
						
							| 30 | 9 29 | impbid2 | ⊢ ( ( ♯ ‘ 𝑤 )  =  1  →  ( ( 𝑤  ≠  ∅  ∧  𝑤  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑤 )  −  1 ) ) { ( 𝑤 ‘ 𝑖 ) ,  ( 𝑤 ‘ ( 𝑖  +  1 ) ) }  ∈  ( Edg ‘ 𝐺 ) )  ↔  𝑤  ∈  Word  ( Vtx ‘ 𝐺 ) ) ) | 
						
							| 31 | 30 | pm5.32ri | ⊢ ( ( ( 𝑤  ≠  ∅  ∧  𝑤  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑤 )  −  1 ) ) { ( 𝑤 ‘ 𝑖 ) ,  ( 𝑤 ‘ ( 𝑖  +  1 ) ) }  ∈  ( Edg ‘ 𝐺 ) )  ∧  ( ♯ ‘ 𝑤 )  =  1 )  ↔  ( 𝑤  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑤 )  =  1 ) ) | 
						
							| 32 | 8 31 | bitri | ⊢ ( ( 𝑤  ∈  ( WWalks ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑤 )  =  ( 0  +  1 ) )  ↔  ( 𝑤  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑤 )  =  1 ) ) | 
						
							| 33 | 32 | a1i | ⊢ ( 0  ∈  ℕ0  →  ( ( 𝑤  ∈  ( WWalks ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑤 )  =  ( 0  +  1 ) )  ↔  ( 𝑤  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑤 )  =  1 ) ) ) | 
						
							| 34 | 33 | rabbidva2 | ⊢ ( 0  ∈  ℕ0  →  { 𝑤  ∈  ( WWalks ‘ 𝐺 )  ∣  ( ♯ ‘ 𝑤 )  =  ( 0  +  1 ) }  =  { 𝑤  ∈  Word  ( Vtx ‘ 𝐺 )  ∣  ( ♯ ‘ 𝑤 )  =  1 } ) | 
						
							| 35 | 2 34 | eqtrd | ⊢ ( 0  ∈  ℕ0  →  ( 0  WWalksN  𝐺 )  =  { 𝑤  ∈  Word  ( Vtx ‘ 𝐺 )  ∣  ( ♯ ‘ 𝑤 )  =  1 } ) | 
						
							| 36 | 1 35 | ax-mp | ⊢ ( 0  WWalksN  𝐺 )  =  { 𝑤  ∈  Word  ( Vtx ‘ 𝐺 )  ∣  ( ♯ ‘ 𝑤 )  =  1 } |