Metamath Proof Explorer


Theorem wwlksn0s

Description: The set of all walks as words of length 0 is the set of all words of length 1 over the vertices. (Contributed by Alexander van der Vekens, 22-Jul-2018) (Revised by AV, 12-Apr-2021)

Ref Expression
Assertion wwlksn0s 0 WWalksN G = w Word Vtx G | w = 1

Proof

Step Hyp Ref Expression
1 0nn0 0 0
2 wwlksn 0 0 0 WWalksN G = w WWalks G | w = 0 + 1
3 eqid Vtx G = Vtx G
4 eqid Edg G = Edg G
5 3 4 iswwlks w WWalks G w w Word Vtx G i 0 ..^ w 1 w i w i + 1 Edg G
6 0p1e1 0 + 1 = 1
7 6 eqeq2i w = 0 + 1 w = 1
8 5 7 anbi12i w WWalks G w = 0 + 1 w w Word Vtx G i 0 ..^ w 1 w i w i + 1 Edg G w = 1
9 simp2 w w Word Vtx G i 0 ..^ w 1 w i w i + 1 Edg G w Word Vtx G
10 vex w V
11 0lt1 0 < 1
12 breq2 w = 1 0 < w 0 < 1
13 11 12 mpbiri w = 1 0 < w
14 hashgt0n0 w V 0 < w w
15 10 13 14 sylancr w = 1 w
16 15 adantr w = 1 w Word Vtx G w
17 simpr w = 1 w Word Vtx G w Word Vtx G
18 ral0 i w i w i + 1 Edg G
19 oveq1 w = 1 w 1 = 1 1
20 1m1e0 1 1 = 0
21 19 20 eqtrdi w = 1 w 1 = 0
22 21 oveq2d w = 1 0 ..^ w 1 = 0 ..^ 0
23 fzo0 0 ..^ 0 =
24 22 23 eqtrdi w = 1 0 ..^ w 1 =
25 24 raleqdv w = 1 i 0 ..^ w 1 w i w i + 1 Edg G i w i w i + 1 Edg G
26 18 25 mpbiri w = 1 i 0 ..^ w 1 w i w i + 1 Edg G
27 26 adantr w = 1 w Word Vtx G i 0 ..^ w 1 w i w i + 1 Edg G
28 16 17 27 3jca w = 1 w Word Vtx G w w Word Vtx G i 0 ..^ w 1 w i w i + 1 Edg G
29 28 ex w = 1 w Word Vtx G w w Word Vtx G i 0 ..^ w 1 w i w i + 1 Edg G
30 9 29 impbid2 w = 1 w w Word Vtx G i 0 ..^ w 1 w i w i + 1 Edg G w Word Vtx G
31 30 pm5.32ri w w Word Vtx G i 0 ..^ w 1 w i w i + 1 Edg G w = 1 w Word Vtx G w = 1
32 8 31 bitri w WWalks G w = 0 + 1 w Word Vtx G w = 1
33 32 a1i 0 0 w WWalks G w = 0 + 1 w Word Vtx G w = 1
34 33 rabbidva2 0 0 w WWalks G | w = 0 + 1 = w Word Vtx G | w = 1
35 2 34 eqtrd 0 0 0 WWalksN G = w Word Vtx G | w = 1
36 1 35 ax-mp 0 WWalksN G = w Word Vtx G | w = 1