| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rusgrnumwwlk.v | ⊢ 𝑉  =  ( Vtx ‘ 𝐺 ) | 
						
							| 2 |  | rusgrnumwwlk.l | ⊢ 𝐿  =  ( 𝑣  ∈  𝑉 ,  𝑛  ∈  ℕ0  ↦  ( ♯ ‘ { 𝑤  ∈  ( 𝑛  WWalksN  𝐺 )  ∣  ( 𝑤 ‘ 0 )  =  𝑣 } ) ) | 
						
							| 3 |  | simpr2 | ⊢ ( ( 𝐺  RegUSGraph  𝐾  ∧  ( 𝑉  ∈  Fin  ∧  𝑃  ∈  𝑉  ∧  𝑁  ∈  ℕ0 ) )  →  𝑃  ∈  𝑉 ) | 
						
							| 4 |  | simpr3 | ⊢ ( ( 𝐺  RegUSGraph  𝐾  ∧  ( 𝑉  ∈  Fin  ∧  𝑃  ∈  𝑉  ∧  𝑁  ∈  ℕ0 ) )  →  𝑁  ∈  ℕ0 ) | 
						
							| 5 | 1 2 | rusgrnumwwlklem | ⊢ ( ( 𝑃  ∈  𝑉  ∧  𝑁  ∈  ℕ0 )  →  ( 𝑃 𝐿 𝑁 )  =  ( ♯ ‘ { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( 𝑤 ‘ 0 )  =  𝑃 } ) ) | 
						
							| 6 | 5 | eqeq1d | ⊢ ( ( 𝑃  ∈  𝑉  ∧  𝑁  ∈  ℕ0 )  →  ( ( 𝑃 𝐿 𝑁 )  =  ( 𝐾 ↑ 𝑁 )  ↔  ( ♯ ‘ { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( 𝑤 ‘ 0 )  =  𝑃 } )  =  ( 𝐾 ↑ 𝑁 ) ) ) | 
						
							| 7 | 3 4 6 | syl2anc | ⊢ ( ( 𝐺  RegUSGraph  𝐾  ∧  ( 𝑉  ∈  Fin  ∧  𝑃  ∈  𝑉  ∧  𝑁  ∈  ℕ0 ) )  →  ( ( 𝑃 𝐿 𝑁 )  =  ( 𝐾 ↑ 𝑁 )  ↔  ( ♯ ‘ { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( 𝑤 ‘ 0 )  =  𝑃 } )  =  ( 𝐾 ↑ 𝑁 ) ) ) | 
						
							| 8 |  | eqid | ⊢ ( Edg ‘ 𝐺 )  =  ( Edg ‘ 𝐺 ) | 
						
							| 9 | 8 | wwlksnredwwlkn0 | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝑤  ∈  ( ( 𝑁  +  1 )  WWalksN  𝐺 ) )  →  ( ( 𝑤 ‘ 0 )  =  𝑃  ↔  ∃ 𝑦  ∈  ( 𝑁  WWalksN  𝐺 ) ( ( 𝑤  prefix  ( 𝑁  +  1 ) )  =  𝑦  ∧  ( 𝑦 ‘ 0 )  =  𝑃  ∧  { ( lastS ‘ 𝑦 ) ,  ( lastS ‘ 𝑤 ) }  ∈  ( Edg ‘ 𝐺 ) ) ) ) | 
						
							| 10 | 9 | ex | ⊢ ( 𝑁  ∈  ℕ0  →  ( 𝑤  ∈  ( ( 𝑁  +  1 )  WWalksN  𝐺 )  →  ( ( 𝑤 ‘ 0 )  =  𝑃  ↔  ∃ 𝑦  ∈  ( 𝑁  WWalksN  𝐺 ) ( ( 𝑤  prefix  ( 𝑁  +  1 ) )  =  𝑦  ∧  ( 𝑦 ‘ 0 )  =  𝑃  ∧  { ( lastS ‘ 𝑦 ) ,  ( lastS ‘ 𝑤 ) }  ∈  ( Edg ‘ 𝐺 ) ) ) ) ) | 
						
							| 11 | 10 | 3ad2ant3 | ⊢ ( ( 𝑉  ∈  Fin  ∧  𝑃  ∈  𝑉  ∧  𝑁  ∈  ℕ0 )  →  ( 𝑤  ∈  ( ( 𝑁  +  1 )  WWalksN  𝐺 )  →  ( ( 𝑤 ‘ 0 )  =  𝑃  ↔  ∃ 𝑦  ∈  ( 𝑁  WWalksN  𝐺 ) ( ( 𝑤  prefix  ( 𝑁  +  1 ) )  =  𝑦  ∧  ( 𝑦 ‘ 0 )  =  𝑃  ∧  { ( lastS ‘ 𝑦 ) ,  ( lastS ‘ 𝑤 ) }  ∈  ( Edg ‘ 𝐺 ) ) ) ) ) | 
						
							| 12 | 11 | adantl | ⊢ ( ( 𝐺  RegUSGraph  𝐾  ∧  ( 𝑉  ∈  Fin  ∧  𝑃  ∈  𝑉  ∧  𝑁  ∈  ℕ0 ) )  →  ( 𝑤  ∈  ( ( 𝑁  +  1 )  WWalksN  𝐺 )  →  ( ( 𝑤 ‘ 0 )  =  𝑃  ↔  ∃ 𝑦  ∈  ( 𝑁  WWalksN  𝐺 ) ( ( 𝑤  prefix  ( 𝑁  +  1 ) )  =  𝑦  ∧  ( 𝑦 ‘ 0 )  =  𝑃  ∧  { ( lastS ‘ 𝑦 ) ,  ( lastS ‘ 𝑤 ) }  ∈  ( Edg ‘ 𝐺 ) ) ) ) ) | 
						
							| 13 | 12 | imp | ⊢ ( ( ( 𝐺  RegUSGraph  𝐾  ∧  ( 𝑉  ∈  Fin  ∧  𝑃  ∈  𝑉  ∧  𝑁  ∈  ℕ0 ) )  ∧  𝑤  ∈  ( ( 𝑁  +  1 )  WWalksN  𝐺 ) )  →  ( ( 𝑤 ‘ 0 )  =  𝑃  ↔  ∃ 𝑦  ∈  ( 𝑁  WWalksN  𝐺 ) ( ( 𝑤  prefix  ( 𝑁  +  1 ) )  =  𝑦  ∧  ( 𝑦 ‘ 0 )  =  𝑃  ∧  { ( lastS ‘ 𝑦 ) ,  ( lastS ‘ 𝑤 ) }  ∈  ( Edg ‘ 𝐺 ) ) ) ) | 
						
							| 14 | 13 | rabbidva | ⊢ ( ( 𝐺  RegUSGraph  𝐾  ∧  ( 𝑉  ∈  Fin  ∧  𝑃  ∈  𝑉  ∧  𝑁  ∈  ℕ0 ) )  →  { 𝑤  ∈  ( ( 𝑁  +  1 )  WWalksN  𝐺 )  ∣  ( 𝑤 ‘ 0 )  =  𝑃 }  =  { 𝑤  ∈  ( ( 𝑁  +  1 )  WWalksN  𝐺 )  ∣  ∃ 𝑦  ∈  ( 𝑁  WWalksN  𝐺 ) ( ( 𝑤  prefix  ( 𝑁  +  1 ) )  =  𝑦  ∧  ( 𝑦 ‘ 0 )  =  𝑃  ∧  { ( lastS ‘ 𝑦 ) ,  ( lastS ‘ 𝑤 ) }  ∈  ( Edg ‘ 𝐺 ) ) } ) | 
						
							| 15 | 14 | adantr | ⊢ ( ( ( 𝐺  RegUSGraph  𝐾  ∧  ( 𝑉  ∈  Fin  ∧  𝑃  ∈  𝑉  ∧  𝑁  ∈  ℕ0 ) )  ∧  ( ♯ ‘ { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( 𝑤 ‘ 0 )  =  𝑃 } )  =  ( 𝐾 ↑ 𝑁 ) )  →  { 𝑤  ∈  ( ( 𝑁  +  1 )  WWalksN  𝐺 )  ∣  ( 𝑤 ‘ 0 )  =  𝑃 }  =  { 𝑤  ∈  ( ( 𝑁  +  1 )  WWalksN  𝐺 )  ∣  ∃ 𝑦  ∈  ( 𝑁  WWalksN  𝐺 ) ( ( 𝑤  prefix  ( 𝑁  +  1 ) )  =  𝑦  ∧  ( 𝑦 ‘ 0 )  =  𝑃  ∧  { ( lastS ‘ 𝑦 ) ,  ( lastS ‘ 𝑤 ) }  ∈  ( Edg ‘ 𝐺 ) ) } ) | 
						
							| 16 | 15 | fveq2d | ⊢ ( ( ( 𝐺  RegUSGraph  𝐾  ∧  ( 𝑉  ∈  Fin  ∧  𝑃  ∈  𝑉  ∧  𝑁  ∈  ℕ0 ) )  ∧  ( ♯ ‘ { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( 𝑤 ‘ 0 )  =  𝑃 } )  =  ( 𝐾 ↑ 𝑁 ) )  →  ( ♯ ‘ { 𝑤  ∈  ( ( 𝑁  +  1 )  WWalksN  𝐺 )  ∣  ( 𝑤 ‘ 0 )  =  𝑃 } )  =  ( ♯ ‘ { 𝑤  ∈  ( ( 𝑁  +  1 )  WWalksN  𝐺 )  ∣  ∃ 𝑦  ∈  ( 𝑁  WWalksN  𝐺 ) ( ( 𝑤  prefix  ( 𝑁  +  1 ) )  =  𝑦  ∧  ( 𝑦 ‘ 0 )  =  𝑃  ∧  { ( lastS ‘ 𝑦 ) ,  ( lastS ‘ 𝑤 ) }  ∈  ( Edg ‘ 𝐺 ) ) } ) ) | 
						
							| 17 |  | simp2 | ⊢ ( ( ( 𝑤  prefix  ( 𝑁  +  1 ) )  =  𝑦  ∧  ( 𝑦 ‘ 0 )  =  𝑃  ∧  { ( lastS ‘ 𝑦 ) ,  ( lastS ‘ 𝑤 ) }  ∈  ( Edg ‘ 𝐺 ) )  →  ( 𝑦 ‘ 0 )  =  𝑃 ) | 
						
							| 18 | 17 | pm4.71ri | ⊢ ( ( ( 𝑤  prefix  ( 𝑁  +  1 ) )  =  𝑦  ∧  ( 𝑦 ‘ 0 )  =  𝑃  ∧  { ( lastS ‘ 𝑦 ) ,  ( lastS ‘ 𝑤 ) }  ∈  ( Edg ‘ 𝐺 ) )  ↔  ( ( 𝑦 ‘ 0 )  =  𝑃  ∧  ( ( 𝑤  prefix  ( 𝑁  +  1 ) )  =  𝑦  ∧  ( 𝑦 ‘ 0 )  =  𝑃  ∧  { ( lastS ‘ 𝑦 ) ,  ( lastS ‘ 𝑤 ) }  ∈  ( Edg ‘ 𝐺 ) ) ) ) | 
						
							| 19 | 18 | a1i | ⊢ ( ( ( ( 𝐺  RegUSGraph  𝐾  ∧  ( 𝑉  ∈  Fin  ∧  𝑃  ∈  𝑉  ∧  𝑁  ∈  ℕ0 ) )  ∧  𝑤  ∈  ( ( 𝑁  +  1 )  WWalksN  𝐺 ) )  ∧  𝑦  ∈  ( 𝑁  WWalksN  𝐺 ) )  →  ( ( ( 𝑤  prefix  ( 𝑁  +  1 ) )  =  𝑦  ∧  ( 𝑦 ‘ 0 )  =  𝑃  ∧  { ( lastS ‘ 𝑦 ) ,  ( lastS ‘ 𝑤 ) }  ∈  ( Edg ‘ 𝐺 ) )  ↔  ( ( 𝑦 ‘ 0 )  =  𝑃  ∧  ( ( 𝑤  prefix  ( 𝑁  +  1 ) )  =  𝑦  ∧  ( 𝑦 ‘ 0 )  =  𝑃  ∧  { ( lastS ‘ 𝑦 ) ,  ( lastS ‘ 𝑤 ) }  ∈  ( Edg ‘ 𝐺 ) ) ) ) ) | 
						
							| 20 | 19 | rexbidva | ⊢ ( ( ( 𝐺  RegUSGraph  𝐾  ∧  ( 𝑉  ∈  Fin  ∧  𝑃  ∈  𝑉  ∧  𝑁  ∈  ℕ0 ) )  ∧  𝑤  ∈  ( ( 𝑁  +  1 )  WWalksN  𝐺 ) )  →  ( ∃ 𝑦  ∈  ( 𝑁  WWalksN  𝐺 ) ( ( 𝑤  prefix  ( 𝑁  +  1 ) )  =  𝑦  ∧  ( 𝑦 ‘ 0 )  =  𝑃  ∧  { ( lastS ‘ 𝑦 ) ,  ( lastS ‘ 𝑤 ) }  ∈  ( Edg ‘ 𝐺 ) )  ↔  ∃ 𝑦  ∈  ( 𝑁  WWalksN  𝐺 ) ( ( 𝑦 ‘ 0 )  =  𝑃  ∧  ( ( 𝑤  prefix  ( 𝑁  +  1 ) )  =  𝑦  ∧  ( 𝑦 ‘ 0 )  =  𝑃  ∧  { ( lastS ‘ 𝑦 ) ,  ( lastS ‘ 𝑤 ) }  ∈  ( Edg ‘ 𝐺 ) ) ) ) ) | 
						
							| 21 |  | fveq1 | ⊢ ( 𝑥  =  𝑦  →  ( 𝑥 ‘ 0 )  =  ( 𝑦 ‘ 0 ) ) | 
						
							| 22 | 21 | eqeq1d | ⊢ ( 𝑥  =  𝑦  →  ( ( 𝑥 ‘ 0 )  =  𝑃  ↔  ( 𝑦 ‘ 0 )  =  𝑃 ) ) | 
						
							| 23 | 22 | rexrab | ⊢ ( ∃ 𝑦  ∈  { 𝑥  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( 𝑥 ‘ 0 )  =  𝑃 } ( ( 𝑤  prefix  ( 𝑁  +  1 ) )  =  𝑦  ∧  ( 𝑦 ‘ 0 )  =  𝑃  ∧  { ( lastS ‘ 𝑦 ) ,  ( lastS ‘ 𝑤 ) }  ∈  ( Edg ‘ 𝐺 ) )  ↔  ∃ 𝑦  ∈  ( 𝑁  WWalksN  𝐺 ) ( ( 𝑦 ‘ 0 )  =  𝑃  ∧  ( ( 𝑤  prefix  ( 𝑁  +  1 ) )  =  𝑦  ∧  ( 𝑦 ‘ 0 )  =  𝑃  ∧  { ( lastS ‘ 𝑦 ) ,  ( lastS ‘ 𝑤 ) }  ∈  ( Edg ‘ 𝐺 ) ) ) ) | 
						
							| 24 | 20 23 | bitr4di | ⊢ ( ( ( 𝐺  RegUSGraph  𝐾  ∧  ( 𝑉  ∈  Fin  ∧  𝑃  ∈  𝑉  ∧  𝑁  ∈  ℕ0 ) )  ∧  𝑤  ∈  ( ( 𝑁  +  1 )  WWalksN  𝐺 ) )  →  ( ∃ 𝑦  ∈  ( 𝑁  WWalksN  𝐺 ) ( ( 𝑤  prefix  ( 𝑁  +  1 ) )  =  𝑦  ∧  ( 𝑦 ‘ 0 )  =  𝑃  ∧  { ( lastS ‘ 𝑦 ) ,  ( lastS ‘ 𝑤 ) }  ∈  ( Edg ‘ 𝐺 ) )  ↔  ∃ 𝑦  ∈  { 𝑥  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( 𝑥 ‘ 0 )  =  𝑃 } ( ( 𝑤  prefix  ( 𝑁  +  1 ) )  =  𝑦  ∧  ( 𝑦 ‘ 0 )  =  𝑃  ∧  { ( lastS ‘ 𝑦 ) ,  ( lastS ‘ 𝑤 ) }  ∈  ( Edg ‘ 𝐺 ) ) ) ) | 
						
							| 25 | 24 | rabbidva | ⊢ ( ( 𝐺  RegUSGraph  𝐾  ∧  ( 𝑉  ∈  Fin  ∧  𝑃  ∈  𝑉  ∧  𝑁  ∈  ℕ0 ) )  →  { 𝑤  ∈  ( ( 𝑁  +  1 )  WWalksN  𝐺 )  ∣  ∃ 𝑦  ∈  ( 𝑁  WWalksN  𝐺 ) ( ( 𝑤  prefix  ( 𝑁  +  1 ) )  =  𝑦  ∧  ( 𝑦 ‘ 0 )  =  𝑃  ∧  { ( lastS ‘ 𝑦 ) ,  ( lastS ‘ 𝑤 ) }  ∈  ( Edg ‘ 𝐺 ) ) }  =  { 𝑤  ∈  ( ( 𝑁  +  1 )  WWalksN  𝐺 )  ∣  ∃ 𝑦  ∈  { 𝑥  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( 𝑥 ‘ 0 )  =  𝑃 } ( ( 𝑤  prefix  ( 𝑁  +  1 ) )  =  𝑦  ∧  ( 𝑦 ‘ 0 )  =  𝑃  ∧  { ( lastS ‘ 𝑦 ) ,  ( lastS ‘ 𝑤 ) }  ∈  ( Edg ‘ 𝐺 ) ) } ) | 
						
							| 26 | 25 | adantr | ⊢ ( ( ( 𝐺  RegUSGraph  𝐾  ∧  ( 𝑉  ∈  Fin  ∧  𝑃  ∈  𝑉  ∧  𝑁  ∈  ℕ0 ) )  ∧  ( ♯ ‘ { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( 𝑤 ‘ 0 )  =  𝑃 } )  =  ( 𝐾 ↑ 𝑁 ) )  →  { 𝑤  ∈  ( ( 𝑁  +  1 )  WWalksN  𝐺 )  ∣  ∃ 𝑦  ∈  ( 𝑁  WWalksN  𝐺 ) ( ( 𝑤  prefix  ( 𝑁  +  1 ) )  =  𝑦  ∧  ( 𝑦 ‘ 0 )  =  𝑃  ∧  { ( lastS ‘ 𝑦 ) ,  ( lastS ‘ 𝑤 ) }  ∈  ( Edg ‘ 𝐺 ) ) }  =  { 𝑤  ∈  ( ( 𝑁  +  1 )  WWalksN  𝐺 )  ∣  ∃ 𝑦  ∈  { 𝑥  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( 𝑥 ‘ 0 )  =  𝑃 } ( ( 𝑤  prefix  ( 𝑁  +  1 ) )  =  𝑦  ∧  ( 𝑦 ‘ 0 )  =  𝑃  ∧  { ( lastS ‘ 𝑦 ) ,  ( lastS ‘ 𝑤 ) }  ∈  ( Edg ‘ 𝐺 ) ) } ) | 
						
							| 27 | 26 | fveq2d | ⊢ ( ( ( 𝐺  RegUSGraph  𝐾  ∧  ( 𝑉  ∈  Fin  ∧  𝑃  ∈  𝑉  ∧  𝑁  ∈  ℕ0 ) )  ∧  ( ♯ ‘ { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( 𝑤 ‘ 0 )  =  𝑃 } )  =  ( 𝐾 ↑ 𝑁 ) )  →  ( ♯ ‘ { 𝑤  ∈  ( ( 𝑁  +  1 )  WWalksN  𝐺 )  ∣  ∃ 𝑦  ∈  ( 𝑁  WWalksN  𝐺 ) ( ( 𝑤  prefix  ( 𝑁  +  1 ) )  =  𝑦  ∧  ( 𝑦 ‘ 0 )  =  𝑃  ∧  { ( lastS ‘ 𝑦 ) ,  ( lastS ‘ 𝑤 ) }  ∈  ( Edg ‘ 𝐺 ) ) } )  =  ( ♯ ‘ { 𝑤  ∈  ( ( 𝑁  +  1 )  WWalksN  𝐺 )  ∣  ∃ 𝑦  ∈  { 𝑥  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( 𝑥 ‘ 0 )  =  𝑃 } ( ( 𝑤  prefix  ( 𝑁  +  1 ) )  =  𝑦  ∧  ( 𝑦 ‘ 0 )  =  𝑃  ∧  { ( lastS ‘ 𝑦 ) ,  ( lastS ‘ 𝑤 ) }  ∈  ( Edg ‘ 𝐺 ) ) } ) ) | 
						
							| 28 |  | simplr1 | ⊢ ( ( ( 𝐺  RegUSGraph  𝐾  ∧  ( 𝑉  ∈  Fin  ∧  𝑃  ∈  𝑉  ∧  𝑁  ∈  ℕ0 ) )  ∧  ( ♯ ‘ { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( 𝑤 ‘ 0 )  =  𝑃 } )  =  ( 𝐾 ↑ 𝑁 ) )  →  𝑉  ∈  Fin ) | 
						
							| 29 | 1 | eleq1i | ⊢ ( 𝑉  ∈  Fin  ↔  ( Vtx ‘ 𝐺 )  ∈  Fin ) | 
						
							| 30 | 29 | biimpi | ⊢ ( 𝑉  ∈  Fin  →  ( Vtx ‘ 𝐺 )  ∈  Fin ) | 
						
							| 31 |  | eqid | ⊢ ( ( 𝑁  +  1 )  WWalksN  𝐺 )  =  ( ( 𝑁  +  1 )  WWalksN  𝐺 ) | 
						
							| 32 |  | eqid | ⊢ { 𝑥  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( 𝑥 ‘ 0 )  =  𝑃 }  =  { 𝑥  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( 𝑥 ‘ 0 )  =  𝑃 } | 
						
							| 33 | 31 8 32 | hashwwlksnext | ⊢ ( ( Vtx ‘ 𝐺 )  ∈  Fin  →  ( ♯ ‘ { 𝑤  ∈  ( ( 𝑁  +  1 )  WWalksN  𝐺 )  ∣  ∃ 𝑦  ∈  { 𝑥  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( 𝑥 ‘ 0 )  =  𝑃 } ( ( 𝑤  prefix  ( 𝑁  +  1 ) )  =  𝑦  ∧  ( 𝑦 ‘ 0 )  =  𝑃  ∧  { ( lastS ‘ 𝑦 ) ,  ( lastS ‘ 𝑤 ) }  ∈  ( Edg ‘ 𝐺 ) ) } )  =  Σ 𝑦  ∈  { 𝑥  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( 𝑥 ‘ 0 )  =  𝑃 } ( ♯ ‘ { 𝑤  ∈  ( ( 𝑁  +  1 )  WWalksN  𝐺 )  ∣  ( ( 𝑤  prefix  ( 𝑁  +  1 ) )  =  𝑦  ∧  ( 𝑦 ‘ 0 )  =  𝑃  ∧  { ( lastS ‘ 𝑦 ) ,  ( lastS ‘ 𝑤 ) }  ∈  ( Edg ‘ 𝐺 ) ) } ) ) | 
						
							| 34 | 28 30 33 | 3syl | ⊢ ( ( ( 𝐺  RegUSGraph  𝐾  ∧  ( 𝑉  ∈  Fin  ∧  𝑃  ∈  𝑉  ∧  𝑁  ∈  ℕ0 ) )  ∧  ( ♯ ‘ { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( 𝑤 ‘ 0 )  =  𝑃 } )  =  ( 𝐾 ↑ 𝑁 ) )  →  ( ♯ ‘ { 𝑤  ∈  ( ( 𝑁  +  1 )  WWalksN  𝐺 )  ∣  ∃ 𝑦  ∈  { 𝑥  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( 𝑥 ‘ 0 )  =  𝑃 } ( ( 𝑤  prefix  ( 𝑁  +  1 ) )  =  𝑦  ∧  ( 𝑦 ‘ 0 )  =  𝑃  ∧  { ( lastS ‘ 𝑦 ) ,  ( lastS ‘ 𝑤 ) }  ∈  ( Edg ‘ 𝐺 ) ) } )  =  Σ 𝑦  ∈  { 𝑥  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( 𝑥 ‘ 0 )  =  𝑃 } ( ♯ ‘ { 𝑤  ∈  ( ( 𝑁  +  1 )  WWalksN  𝐺 )  ∣  ( ( 𝑤  prefix  ( 𝑁  +  1 ) )  =  𝑦  ∧  ( 𝑦 ‘ 0 )  =  𝑃  ∧  { ( lastS ‘ 𝑦 ) ,  ( lastS ‘ 𝑤 ) }  ∈  ( Edg ‘ 𝐺 ) ) } ) ) | 
						
							| 35 |  | fveq1 | ⊢ ( 𝑥  =  𝑤  →  ( 𝑥 ‘ 0 )  =  ( 𝑤 ‘ 0 ) ) | 
						
							| 36 | 35 | eqeq1d | ⊢ ( 𝑥  =  𝑤  →  ( ( 𝑥 ‘ 0 )  =  𝑃  ↔  ( 𝑤 ‘ 0 )  =  𝑃 ) ) | 
						
							| 37 | 36 | cbvrabv | ⊢ { 𝑥  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( 𝑥 ‘ 0 )  =  𝑃 }  =  { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( 𝑤 ‘ 0 )  =  𝑃 } | 
						
							| 38 | 37 | sumeq1i | ⊢ Σ 𝑦  ∈  { 𝑥  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( 𝑥 ‘ 0 )  =  𝑃 } ( ♯ ‘ { 𝑤  ∈  ( ( 𝑁  +  1 )  WWalksN  𝐺 )  ∣  ( ( 𝑤  prefix  ( 𝑁  +  1 ) )  =  𝑦  ∧  ( 𝑦 ‘ 0 )  =  𝑃  ∧  { ( lastS ‘ 𝑦 ) ,  ( lastS ‘ 𝑤 ) }  ∈  ( Edg ‘ 𝐺 ) ) } )  =  Σ 𝑦  ∈  { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( 𝑤 ‘ 0 )  =  𝑃 } ( ♯ ‘ { 𝑤  ∈  ( ( 𝑁  +  1 )  WWalksN  𝐺 )  ∣  ( ( 𝑤  prefix  ( 𝑁  +  1 ) )  =  𝑦  ∧  ( 𝑦 ‘ 0 )  =  𝑃  ∧  { ( lastS ‘ 𝑦 ) ,  ( lastS ‘ 𝑤 ) }  ∈  ( Edg ‘ 𝐺 ) ) } ) | 
						
							| 39 | 38 | a1i | ⊢ ( ( ( 𝐺  RegUSGraph  𝐾  ∧  ( 𝑉  ∈  Fin  ∧  𝑃  ∈  𝑉  ∧  𝑁  ∈  ℕ0 ) )  ∧  ( ♯ ‘ { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( 𝑤 ‘ 0 )  =  𝑃 } )  =  ( 𝐾 ↑ 𝑁 ) )  →  Σ 𝑦  ∈  { 𝑥  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( 𝑥 ‘ 0 )  =  𝑃 } ( ♯ ‘ { 𝑤  ∈  ( ( 𝑁  +  1 )  WWalksN  𝐺 )  ∣  ( ( 𝑤  prefix  ( 𝑁  +  1 ) )  =  𝑦  ∧  ( 𝑦 ‘ 0 )  =  𝑃  ∧  { ( lastS ‘ 𝑦 ) ,  ( lastS ‘ 𝑤 ) }  ∈  ( Edg ‘ 𝐺 ) ) } )  =  Σ 𝑦  ∈  { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( 𝑤 ‘ 0 )  =  𝑃 } ( ♯ ‘ { 𝑤  ∈  ( ( 𝑁  +  1 )  WWalksN  𝐺 )  ∣  ( ( 𝑤  prefix  ( 𝑁  +  1 ) )  =  𝑦  ∧  ( 𝑦 ‘ 0 )  =  𝑃  ∧  { ( lastS ‘ 𝑦 ) ,  ( lastS ‘ 𝑤 ) }  ∈  ( Edg ‘ 𝐺 ) ) } ) ) | 
						
							| 40 | 27 34 39 | 3eqtrd | ⊢ ( ( ( 𝐺  RegUSGraph  𝐾  ∧  ( 𝑉  ∈  Fin  ∧  𝑃  ∈  𝑉  ∧  𝑁  ∈  ℕ0 ) )  ∧  ( ♯ ‘ { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( 𝑤 ‘ 0 )  =  𝑃 } )  =  ( 𝐾 ↑ 𝑁 ) )  →  ( ♯ ‘ { 𝑤  ∈  ( ( 𝑁  +  1 )  WWalksN  𝐺 )  ∣  ∃ 𝑦  ∈  ( 𝑁  WWalksN  𝐺 ) ( ( 𝑤  prefix  ( 𝑁  +  1 ) )  =  𝑦  ∧  ( 𝑦 ‘ 0 )  =  𝑃  ∧  { ( lastS ‘ 𝑦 ) ,  ( lastS ‘ 𝑤 ) }  ∈  ( Edg ‘ 𝐺 ) ) } )  =  Σ 𝑦  ∈  { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( 𝑤 ‘ 0 )  =  𝑃 } ( ♯ ‘ { 𝑤  ∈  ( ( 𝑁  +  1 )  WWalksN  𝐺 )  ∣  ( ( 𝑤  prefix  ( 𝑁  +  1 ) )  =  𝑦  ∧  ( 𝑦 ‘ 0 )  =  𝑃  ∧  { ( lastS ‘ 𝑦 ) ,  ( lastS ‘ 𝑤 ) }  ∈  ( Edg ‘ 𝐺 ) ) } ) ) | 
						
							| 41 |  | rusgrnumwwlkslem | ⊢ ( 𝑦  ∈  { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( 𝑤 ‘ 0 )  =  𝑃 }  →  { 𝑤  ∈  ( ( 𝑁  +  1 )  WWalksN  𝐺 )  ∣  ( ( 𝑤  prefix  ( 𝑁  +  1 ) )  =  𝑦  ∧  { ( lastS ‘ 𝑦 ) ,  ( lastS ‘ 𝑤 ) }  ∈  ( Edg ‘ 𝐺 ) ) }  =  { 𝑤  ∈  ( ( 𝑁  +  1 )  WWalksN  𝐺 )  ∣  ( ( 𝑤  prefix  ( 𝑁  +  1 ) )  =  𝑦  ∧  ( 𝑦 ‘ 0 )  =  𝑃  ∧  { ( lastS ‘ 𝑦 ) ,  ( lastS ‘ 𝑤 ) }  ∈  ( Edg ‘ 𝐺 ) ) } ) | 
						
							| 42 | 41 | eqcomd | ⊢ ( 𝑦  ∈  { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( 𝑤 ‘ 0 )  =  𝑃 }  →  { 𝑤  ∈  ( ( 𝑁  +  1 )  WWalksN  𝐺 )  ∣  ( ( 𝑤  prefix  ( 𝑁  +  1 ) )  =  𝑦  ∧  ( 𝑦 ‘ 0 )  =  𝑃  ∧  { ( lastS ‘ 𝑦 ) ,  ( lastS ‘ 𝑤 ) }  ∈  ( Edg ‘ 𝐺 ) ) }  =  { 𝑤  ∈  ( ( 𝑁  +  1 )  WWalksN  𝐺 )  ∣  ( ( 𝑤  prefix  ( 𝑁  +  1 ) )  =  𝑦  ∧  { ( lastS ‘ 𝑦 ) ,  ( lastS ‘ 𝑤 ) }  ∈  ( Edg ‘ 𝐺 ) ) } ) | 
						
							| 43 | 42 | fveq2d | ⊢ ( 𝑦  ∈  { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( 𝑤 ‘ 0 )  =  𝑃 }  →  ( ♯ ‘ { 𝑤  ∈  ( ( 𝑁  +  1 )  WWalksN  𝐺 )  ∣  ( ( 𝑤  prefix  ( 𝑁  +  1 ) )  =  𝑦  ∧  ( 𝑦 ‘ 0 )  =  𝑃  ∧  { ( lastS ‘ 𝑦 ) ,  ( lastS ‘ 𝑤 ) }  ∈  ( Edg ‘ 𝐺 ) ) } )  =  ( ♯ ‘ { 𝑤  ∈  ( ( 𝑁  +  1 )  WWalksN  𝐺 )  ∣  ( ( 𝑤  prefix  ( 𝑁  +  1 ) )  =  𝑦  ∧  { ( lastS ‘ 𝑦 ) ,  ( lastS ‘ 𝑤 ) }  ∈  ( Edg ‘ 𝐺 ) ) } ) ) | 
						
							| 44 | 43 | adantl | ⊢ ( ( ( ( 𝐺  RegUSGraph  𝐾  ∧  ( 𝑉  ∈  Fin  ∧  𝑃  ∈  𝑉  ∧  𝑁  ∈  ℕ0 ) )  ∧  ( ♯ ‘ { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( 𝑤 ‘ 0 )  =  𝑃 } )  =  ( 𝐾 ↑ 𝑁 ) )  ∧  𝑦  ∈  { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( 𝑤 ‘ 0 )  =  𝑃 } )  →  ( ♯ ‘ { 𝑤  ∈  ( ( 𝑁  +  1 )  WWalksN  𝐺 )  ∣  ( ( 𝑤  prefix  ( 𝑁  +  1 ) )  =  𝑦  ∧  ( 𝑦 ‘ 0 )  =  𝑃  ∧  { ( lastS ‘ 𝑦 ) ,  ( lastS ‘ 𝑤 ) }  ∈  ( Edg ‘ 𝐺 ) ) } )  =  ( ♯ ‘ { 𝑤  ∈  ( ( 𝑁  +  1 )  WWalksN  𝐺 )  ∣  ( ( 𝑤  prefix  ( 𝑁  +  1 ) )  =  𝑦  ∧  { ( lastS ‘ 𝑦 ) ,  ( lastS ‘ 𝑤 ) }  ∈  ( Edg ‘ 𝐺 ) ) } ) ) | 
						
							| 45 |  | elrabi | ⊢ ( 𝑦  ∈  { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( 𝑤 ‘ 0 )  =  𝑃 }  →  𝑦  ∈  ( 𝑁  WWalksN  𝐺 ) ) | 
						
							| 46 | 45 | adantl | ⊢ ( ( ( ( 𝐺  RegUSGraph  𝐾  ∧  ( 𝑉  ∈  Fin  ∧  𝑃  ∈  𝑉  ∧  𝑁  ∈  ℕ0 ) )  ∧  ( ♯ ‘ { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( 𝑤 ‘ 0 )  =  𝑃 } )  =  ( 𝐾 ↑ 𝑁 ) )  ∧  𝑦  ∈  { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( 𝑤 ‘ 0 )  =  𝑃 } )  →  𝑦  ∈  ( 𝑁  WWalksN  𝐺 ) ) | 
						
							| 47 | 1 8 | wwlksnexthasheq | ⊢ ( 𝑦  ∈  ( 𝑁  WWalksN  𝐺 )  →  ( ♯ ‘ { 𝑤  ∈  ( ( 𝑁  +  1 )  WWalksN  𝐺 )  ∣  ( ( 𝑤  prefix  ( 𝑁  +  1 ) )  =  𝑦  ∧  { ( lastS ‘ 𝑦 ) ,  ( lastS ‘ 𝑤 ) }  ∈  ( Edg ‘ 𝐺 ) ) } )  =  ( ♯ ‘ { 𝑛  ∈  𝑉  ∣  { ( lastS ‘ 𝑦 ) ,  𝑛 }  ∈  ( Edg ‘ 𝐺 ) } ) ) | 
						
							| 48 | 46 47 | syl | ⊢ ( ( ( ( 𝐺  RegUSGraph  𝐾  ∧  ( 𝑉  ∈  Fin  ∧  𝑃  ∈  𝑉  ∧  𝑁  ∈  ℕ0 ) )  ∧  ( ♯ ‘ { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( 𝑤 ‘ 0 )  =  𝑃 } )  =  ( 𝐾 ↑ 𝑁 ) )  ∧  𝑦  ∈  { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( 𝑤 ‘ 0 )  =  𝑃 } )  →  ( ♯ ‘ { 𝑤  ∈  ( ( 𝑁  +  1 )  WWalksN  𝐺 )  ∣  ( ( 𝑤  prefix  ( 𝑁  +  1 ) )  =  𝑦  ∧  { ( lastS ‘ 𝑦 ) ,  ( lastS ‘ 𝑤 ) }  ∈  ( Edg ‘ 𝐺 ) ) } )  =  ( ♯ ‘ { 𝑛  ∈  𝑉  ∣  { ( lastS ‘ 𝑦 ) ,  𝑛 }  ∈  ( Edg ‘ 𝐺 ) } ) ) | 
						
							| 49 | 1 | rusgrpropadjvtx | ⊢ ( 𝐺  RegUSGraph  𝐾  →  ( 𝐺  ∈  USGraph  ∧  𝐾  ∈  ℕ0*  ∧  ∀ 𝑝  ∈  𝑉 ( ♯ ‘ { 𝑛  ∈  𝑉  ∣  { 𝑝 ,  𝑛 }  ∈  ( Edg ‘ 𝐺 ) } )  =  𝐾 ) ) | 
						
							| 50 |  | fveq1 | ⊢ ( 𝑤  =  𝑦  →  ( 𝑤 ‘ 0 )  =  ( 𝑦 ‘ 0 ) ) | 
						
							| 51 | 50 | eqeq1d | ⊢ ( 𝑤  =  𝑦  →  ( ( 𝑤 ‘ 0 )  =  𝑃  ↔  ( 𝑦 ‘ 0 )  =  𝑃 ) ) | 
						
							| 52 | 51 | elrab | ⊢ ( 𝑦  ∈  { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( 𝑤 ‘ 0 )  =  𝑃 }  ↔  ( 𝑦  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ( 𝑦 ‘ 0 )  =  𝑃 ) ) | 
						
							| 53 | 1 8 | wwlknp | ⊢ ( 𝑦  ∈  ( 𝑁  WWalksN  𝐺 )  →  ( 𝑦  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑦 )  =  ( 𝑁  +  1 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑁 ) { ( 𝑦 ‘ 𝑖 ) ,  ( 𝑦 ‘ ( 𝑖  +  1 ) ) }  ∈  ( Edg ‘ 𝐺 ) ) ) | 
						
							| 54 | 53 | adantr | ⊢ ( ( 𝑦  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ( 𝑦 ‘ 0 )  =  𝑃 )  →  ( 𝑦  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑦 )  =  ( 𝑁  +  1 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑁 ) { ( 𝑦 ‘ 𝑖 ) ,  ( 𝑦 ‘ ( 𝑖  +  1 ) ) }  ∈  ( Edg ‘ 𝐺 ) ) ) | 
						
							| 55 |  | simpll | ⊢ ( ( ( 𝑦  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑦 )  =  ( 𝑁  +  1 ) )  ∧  ( 𝑉  ∈  Fin  ∧  𝑃  ∈  𝑉  ∧  𝑁  ∈  ℕ0 ) )  →  𝑦  ∈  Word  𝑉 ) | 
						
							| 56 |  | nn0p1gt0 | ⊢ ( 𝑁  ∈  ℕ0  →  0  <  ( 𝑁  +  1 ) ) | 
						
							| 57 | 56 | 3ad2ant3 | ⊢ ( ( 𝑉  ∈  Fin  ∧  𝑃  ∈  𝑉  ∧  𝑁  ∈  ℕ0 )  →  0  <  ( 𝑁  +  1 ) ) | 
						
							| 58 | 57 | adantl | ⊢ ( ( ( 𝑦  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑦 )  =  ( 𝑁  +  1 ) )  ∧  ( 𝑉  ∈  Fin  ∧  𝑃  ∈  𝑉  ∧  𝑁  ∈  ℕ0 ) )  →  0  <  ( 𝑁  +  1 ) ) | 
						
							| 59 |  | breq2 | ⊢ ( ( ♯ ‘ 𝑦 )  =  ( 𝑁  +  1 )  →  ( 0  <  ( ♯ ‘ 𝑦 )  ↔  0  <  ( 𝑁  +  1 ) ) ) | 
						
							| 60 | 59 | ad2antlr | ⊢ ( ( ( 𝑦  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑦 )  =  ( 𝑁  +  1 ) )  ∧  ( 𝑉  ∈  Fin  ∧  𝑃  ∈  𝑉  ∧  𝑁  ∈  ℕ0 ) )  →  ( 0  <  ( ♯ ‘ 𝑦 )  ↔  0  <  ( 𝑁  +  1 ) ) ) | 
						
							| 61 | 58 60 | mpbird | ⊢ ( ( ( 𝑦  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑦 )  =  ( 𝑁  +  1 ) )  ∧  ( 𝑉  ∈  Fin  ∧  𝑃  ∈  𝑉  ∧  𝑁  ∈  ℕ0 ) )  →  0  <  ( ♯ ‘ 𝑦 ) ) | 
						
							| 62 |  | hashle00 | ⊢ ( 𝑦  ∈  Word  𝑉  →  ( ( ♯ ‘ 𝑦 )  ≤  0  ↔  𝑦  =  ∅ ) ) | 
						
							| 63 |  | lencl | ⊢ ( 𝑦  ∈  Word  𝑉  →  ( ♯ ‘ 𝑦 )  ∈  ℕ0 ) | 
						
							| 64 | 63 | nn0red | ⊢ ( 𝑦  ∈  Word  𝑉  →  ( ♯ ‘ 𝑦 )  ∈  ℝ ) | 
						
							| 65 |  | 0re | ⊢ 0  ∈  ℝ | 
						
							| 66 |  | lenlt | ⊢ ( ( ( ♯ ‘ 𝑦 )  ∈  ℝ  ∧  0  ∈  ℝ )  →  ( ( ♯ ‘ 𝑦 )  ≤  0  ↔  ¬  0  <  ( ♯ ‘ 𝑦 ) ) ) | 
						
							| 67 | 66 | bicomd | ⊢ ( ( ( ♯ ‘ 𝑦 )  ∈  ℝ  ∧  0  ∈  ℝ )  →  ( ¬  0  <  ( ♯ ‘ 𝑦 )  ↔  ( ♯ ‘ 𝑦 )  ≤  0 ) ) | 
						
							| 68 | 64 65 67 | sylancl | ⊢ ( 𝑦  ∈  Word  𝑉  →  ( ¬  0  <  ( ♯ ‘ 𝑦 )  ↔  ( ♯ ‘ 𝑦 )  ≤  0 ) ) | 
						
							| 69 |  | nne | ⊢ ( ¬  𝑦  ≠  ∅  ↔  𝑦  =  ∅ ) | 
						
							| 70 | 69 | a1i | ⊢ ( 𝑦  ∈  Word  𝑉  →  ( ¬  𝑦  ≠  ∅  ↔  𝑦  =  ∅ ) ) | 
						
							| 71 | 62 68 70 | 3bitr4rd | ⊢ ( 𝑦  ∈  Word  𝑉  →  ( ¬  𝑦  ≠  ∅  ↔  ¬  0  <  ( ♯ ‘ 𝑦 ) ) ) | 
						
							| 72 | 71 | ad2antrr | ⊢ ( ( ( 𝑦  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑦 )  =  ( 𝑁  +  1 ) )  ∧  ( 𝑉  ∈  Fin  ∧  𝑃  ∈  𝑉  ∧  𝑁  ∈  ℕ0 ) )  →  ( ¬  𝑦  ≠  ∅  ↔  ¬  0  <  ( ♯ ‘ 𝑦 ) ) ) | 
						
							| 73 | 72 | con4bid | ⊢ ( ( ( 𝑦  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑦 )  =  ( 𝑁  +  1 ) )  ∧  ( 𝑉  ∈  Fin  ∧  𝑃  ∈  𝑉  ∧  𝑁  ∈  ℕ0 ) )  →  ( 𝑦  ≠  ∅  ↔  0  <  ( ♯ ‘ 𝑦 ) ) ) | 
						
							| 74 | 61 73 | mpbird | ⊢ ( ( ( 𝑦  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑦 )  =  ( 𝑁  +  1 ) )  ∧  ( 𝑉  ∈  Fin  ∧  𝑃  ∈  𝑉  ∧  𝑁  ∈  ℕ0 ) )  →  𝑦  ≠  ∅ ) | 
						
							| 75 | 55 74 | jca | ⊢ ( ( ( 𝑦  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑦 )  =  ( 𝑁  +  1 ) )  ∧  ( 𝑉  ∈  Fin  ∧  𝑃  ∈  𝑉  ∧  𝑁  ∈  ℕ0 ) )  →  ( 𝑦  ∈  Word  𝑉  ∧  𝑦  ≠  ∅ ) ) | 
						
							| 76 | 75 | ex | ⊢ ( ( 𝑦  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑦 )  =  ( 𝑁  +  1 ) )  →  ( ( 𝑉  ∈  Fin  ∧  𝑃  ∈  𝑉  ∧  𝑁  ∈  ℕ0 )  →  ( 𝑦  ∈  Word  𝑉  ∧  𝑦  ≠  ∅ ) ) ) | 
						
							| 77 | 76 | 3adant3 | ⊢ ( ( 𝑦  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑦 )  =  ( 𝑁  +  1 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑁 ) { ( 𝑦 ‘ 𝑖 ) ,  ( 𝑦 ‘ ( 𝑖  +  1 ) ) }  ∈  ( Edg ‘ 𝐺 ) )  →  ( ( 𝑉  ∈  Fin  ∧  𝑃  ∈  𝑉  ∧  𝑁  ∈  ℕ0 )  →  ( 𝑦  ∈  Word  𝑉  ∧  𝑦  ≠  ∅ ) ) ) | 
						
							| 78 | 54 77 | syl | ⊢ ( ( 𝑦  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ( 𝑦 ‘ 0 )  =  𝑃 )  →  ( ( 𝑉  ∈  Fin  ∧  𝑃  ∈  𝑉  ∧  𝑁  ∈  ℕ0 )  →  ( 𝑦  ∈  Word  𝑉  ∧  𝑦  ≠  ∅ ) ) ) | 
						
							| 79 | 52 78 | sylbi | ⊢ ( 𝑦  ∈  { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( 𝑤 ‘ 0 )  =  𝑃 }  →  ( ( 𝑉  ∈  Fin  ∧  𝑃  ∈  𝑉  ∧  𝑁  ∈  ℕ0 )  →  ( 𝑦  ∈  Word  𝑉  ∧  𝑦  ≠  ∅ ) ) ) | 
						
							| 80 | 79 | imp | ⊢ ( ( 𝑦  ∈  { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( 𝑤 ‘ 0 )  =  𝑃 }  ∧  ( 𝑉  ∈  Fin  ∧  𝑃  ∈  𝑉  ∧  𝑁  ∈  ℕ0 ) )  →  ( 𝑦  ∈  Word  𝑉  ∧  𝑦  ≠  ∅ ) ) | 
						
							| 81 |  | lswcl | ⊢ ( ( 𝑦  ∈  Word  𝑉  ∧  𝑦  ≠  ∅ )  →  ( lastS ‘ 𝑦 )  ∈  𝑉 ) | 
						
							| 82 | 80 81 | syl | ⊢ ( ( 𝑦  ∈  { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( 𝑤 ‘ 0 )  =  𝑃 }  ∧  ( 𝑉  ∈  Fin  ∧  𝑃  ∈  𝑉  ∧  𝑁  ∈  ℕ0 ) )  →  ( lastS ‘ 𝑦 )  ∈  𝑉 ) | 
						
							| 83 | 82 | ad2antrr | ⊢ ( ( ( ( 𝑦  ∈  { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( 𝑤 ‘ 0 )  =  𝑃 }  ∧  ( 𝑉  ∈  Fin  ∧  𝑃  ∈  𝑉  ∧  𝑁  ∈  ℕ0 ) )  ∧  ( ♯ ‘ { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( 𝑤 ‘ 0 )  =  𝑃 } )  =  ( 𝐾 ↑ 𝑁 ) )  ∧  ∀ 𝑝  ∈  𝑉 ( ♯ ‘ { 𝑛  ∈  𝑉  ∣  { 𝑝 ,  𝑛 }  ∈  ( Edg ‘ 𝐺 ) } )  =  𝐾 )  →  ( lastS ‘ 𝑦 )  ∈  𝑉 ) | 
						
							| 84 |  | preq1 | ⊢ ( 𝑝  =  ( lastS ‘ 𝑦 )  →  { 𝑝 ,  𝑛 }  =  { ( lastS ‘ 𝑦 ) ,  𝑛 } ) | 
						
							| 85 | 84 | eleq1d | ⊢ ( 𝑝  =  ( lastS ‘ 𝑦 )  →  ( { 𝑝 ,  𝑛 }  ∈  ( Edg ‘ 𝐺 )  ↔  { ( lastS ‘ 𝑦 ) ,  𝑛 }  ∈  ( Edg ‘ 𝐺 ) ) ) | 
						
							| 86 | 85 | rabbidv | ⊢ ( 𝑝  =  ( lastS ‘ 𝑦 )  →  { 𝑛  ∈  𝑉  ∣  { 𝑝 ,  𝑛 }  ∈  ( Edg ‘ 𝐺 ) }  =  { 𝑛  ∈  𝑉  ∣  { ( lastS ‘ 𝑦 ) ,  𝑛 }  ∈  ( Edg ‘ 𝐺 ) } ) | 
						
							| 87 | 86 | fveqeq2d | ⊢ ( 𝑝  =  ( lastS ‘ 𝑦 )  →  ( ( ♯ ‘ { 𝑛  ∈  𝑉  ∣  { 𝑝 ,  𝑛 }  ∈  ( Edg ‘ 𝐺 ) } )  =  𝐾  ↔  ( ♯ ‘ { 𝑛  ∈  𝑉  ∣  { ( lastS ‘ 𝑦 ) ,  𝑛 }  ∈  ( Edg ‘ 𝐺 ) } )  =  𝐾 ) ) | 
						
							| 88 | 87 | rspcva | ⊢ ( ( ( lastS ‘ 𝑦 )  ∈  𝑉  ∧  ∀ 𝑝  ∈  𝑉 ( ♯ ‘ { 𝑛  ∈  𝑉  ∣  { 𝑝 ,  𝑛 }  ∈  ( Edg ‘ 𝐺 ) } )  =  𝐾 )  →  ( ♯ ‘ { 𝑛  ∈  𝑉  ∣  { ( lastS ‘ 𝑦 ) ,  𝑛 }  ∈  ( Edg ‘ 𝐺 ) } )  =  𝐾 ) | 
						
							| 89 | 83 88 | sylancom | ⊢ ( ( ( ( 𝑦  ∈  { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( 𝑤 ‘ 0 )  =  𝑃 }  ∧  ( 𝑉  ∈  Fin  ∧  𝑃  ∈  𝑉  ∧  𝑁  ∈  ℕ0 ) )  ∧  ( ♯ ‘ { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( 𝑤 ‘ 0 )  =  𝑃 } )  =  ( 𝐾 ↑ 𝑁 ) )  ∧  ∀ 𝑝  ∈  𝑉 ( ♯ ‘ { 𝑛  ∈  𝑉  ∣  { 𝑝 ,  𝑛 }  ∈  ( Edg ‘ 𝐺 ) } )  =  𝐾 )  →  ( ♯ ‘ { 𝑛  ∈  𝑉  ∣  { ( lastS ‘ 𝑦 ) ,  𝑛 }  ∈  ( Edg ‘ 𝐺 ) } )  =  𝐾 ) | 
						
							| 90 | 89 | exp41 | ⊢ ( 𝑦  ∈  { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( 𝑤 ‘ 0 )  =  𝑃 }  →  ( ( 𝑉  ∈  Fin  ∧  𝑃  ∈  𝑉  ∧  𝑁  ∈  ℕ0 )  →  ( ( ♯ ‘ { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( 𝑤 ‘ 0 )  =  𝑃 } )  =  ( 𝐾 ↑ 𝑁 )  →  ( ∀ 𝑝  ∈  𝑉 ( ♯ ‘ { 𝑛  ∈  𝑉  ∣  { 𝑝 ,  𝑛 }  ∈  ( Edg ‘ 𝐺 ) } )  =  𝐾  →  ( ♯ ‘ { 𝑛  ∈  𝑉  ∣  { ( lastS ‘ 𝑦 ) ,  𝑛 }  ∈  ( Edg ‘ 𝐺 ) } )  =  𝐾 ) ) ) ) | 
						
							| 91 | 90 | com14 | ⊢ ( ∀ 𝑝  ∈  𝑉 ( ♯ ‘ { 𝑛  ∈  𝑉  ∣  { 𝑝 ,  𝑛 }  ∈  ( Edg ‘ 𝐺 ) } )  =  𝐾  →  ( ( 𝑉  ∈  Fin  ∧  𝑃  ∈  𝑉  ∧  𝑁  ∈  ℕ0 )  →  ( ( ♯ ‘ { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( 𝑤 ‘ 0 )  =  𝑃 } )  =  ( 𝐾 ↑ 𝑁 )  →  ( 𝑦  ∈  { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( 𝑤 ‘ 0 )  =  𝑃 }  →  ( ♯ ‘ { 𝑛  ∈  𝑉  ∣  { ( lastS ‘ 𝑦 ) ,  𝑛 }  ∈  ( Edg ‘ 𝐺 ) } )  =  𝐾 ) ) ) ) | 
						
							| 92 | 91 | 3ad2ant3 | ⊢ ( ( 𝐺  ∈  USGraph  ∧  𝐾  ∈  ℕ0*  ∧  ∀ 𝑝  ∈  𝑉 ( ♯ ‘ { 𝑛  ∈  𝑉  ∣  { 𝑝 ,  𝑛 }  ∈  ( Edg ‘ 𝐺 ) } )  =  𝐾 )  →  ( ( 𝑉  ∈  Fin  ∧  𝑃  ∈  𝑉  ∧  𝑁  ∈  ℕ0 )  →  ( ( ♯ ‘ { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( 𝑤 ‘ 0 )  =  𝑃 } )  =  ( 𝐾 ↑ 𝑁 )  →  ( 𝑦  ∈  { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( 𝑤 ‘ 0 )  =  𝑃 }  →  ( ♯ ‘ { 𝑛  ∈  𝑉  ∣  { ( lastS ‘ 𝑦 ) ,  𝑛 }  ∈  ( Edg ‘ 𝐺 ) } )  =  𝐾 ) ) ) ) | 
						
							| 93 | 49 92 | syl | ⊢ ( 𝐺  RegUSGraph  𝐾  →  ( ( 𝑉  ∈  Fin  ∧  𝑃  ∈  𝑉  ∧  𝑁  ∈  ℕ0 )  →  ( ( ♯ ‘ { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( 𝑤 ‘ 0 )  =  𝑃 } )  =  ( 𝐾 ↑ 𝑁 )  →  ( 𝑦  ∈  { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( 𝑤 ‘ 0 )  =  𝑃 }  →  ( ♯ ‘ { 𝑛  ∈  𝑉  ∣  { ( lastS ‘ 𝑦 ) ,  𝑛 }  ∈  ( Edg ‘ 𝐺 ) } )  =  𝐾 ) ) ) ) | 
						
							| 94 | 93 | imp41 | ⊢ ( ( ( ( 𝐺  RegUSGraph  𝐾  ∧  ( 𝑉  ∈  Fin  ∧  𝑃  ∈  𝑉  ∧  𝑁  ∈  ℕ0 ) )  ∧  ( ♯ ‘ { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( 𝑤 ‘ 0 )  =  𝑃 } )  =  ( 𝐾 ↑ 𝑁 ) )  ∧  𝑦  ∈  { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( 𝑤 ‘ 0 )  =  𝑃 } )  →  ( ♯ ‘ { 𝑛  ∈  𝑉  ∣  { ( lastS ‘ 𝑦 ) ,  𝑛 }  ∈  ( Edg ‘ 𝐺 ) } )  =  𝐾 ) | 
						
							| 95 | 44 48 94 | 3eqtrd | ⊢ ( ( ( ( 𝐺  RegUSGraph  𝐾  ∧  ( 𝑉  ∈  Fin  ∧  𝑃  ∈  𝑉  ∧  𝑁  ∈  ℕ0 ) )  ∧  ( ♯ ‘ { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( 𝑤 ‘ 0 )  =  𝑃 } )  =  ( 𝐾 ↑ 𝑁 ) )  ∧  𝑦  ∈  { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( 𝑤 ‘ 0 )  =  𝑃 } )  →  ( ♯ ‘ { 𝑤  ∈  ( ( 𝑁  +  1 )  WWalksN  𝐺 )  ∣  ( ( 𝑤  prefix  ( 𝑁  +  1 ) )  =  𝑦  ∧  ( 𝑦 ‘ 0 )  =  𝑃  ∧  { ( lastS ‘ 𝑦 ) ,  ( lastS ‘ 𝑤 ) }  ∈  ( Edg ‘ 𝐺 ) ) } )  =  𝐾 ) | 
						
							| 96 | 95 | sumeq2dv | ⊢ ( ( ( 𝐺  RegUSGraph  𝐾  ∧  ( 𝑉  ∈  Fin  ∧  𝑃  ∈  𝑉  ∧  𝑁  ∈  ℕ0 ) )  ∧  ( ♯ ‘ { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( 𝑤 ‘ 0 )  =  𝑃 } )  =  ( 𝐾 ↑ 𝑁 ) )  →  Σ 𝑦  ∈  { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( 𝑤 ‘ 0 )  =  𝑃 } ( ♯ ‘ { 𝑤  ∈  ( ( 𝑁  +  1 )  WWalksN  𝐺 )  ∣  ( ( 𝑤  prefix  ( 𝑁  +  1 ) )  =  𝑦  ∧  ( 𝑦 ‘ 0 )  =  𝑃  ∧  { ( lastS ‘ 𝑦 ) ,  ( lastS ‘ 𝑤 ) }  ∈  ( Edg ‘ 𝐺 ) ) } )  =  Σ 𝑦  ∈  { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( 𝑤 ‘ 0 )  =  𝑃 } 𝐾 ) | 
						
							| 97 |  | oveq1 | ⊢ ( ( ♯ ‘ { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( 𝑤 ‘ 0 )  =  𝑃 } )  =  ( 𝐾 ↑ 𝑁 )  →  ( ( ♯ ‘ { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( 𝑤 ‘ 0 )  =  𝑃 } )  ·  𝐾 )  =  ( ( 𝐾 ↑ 𝑁 )  ·  𝐾 ) ) | 
						
							| 98 | 97 | adantl | ⊢ ( ( ( 𝐺  RegUSGraph  𝐾  ∧  ( 𝑉  ∈  Fin  ∧  𝑃  ∈  𝑉  ∧  𝑁  ∈  ℕ0 ) )  ∧  ( ♯ ‘ { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( 𝑤 ‘ 0 )  =  𝑃 } )  =  ( 𝐾 ↑ 𝑁 ) )  →  ( ( ♯ ‘ { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( 𝑤 ‘ 0 )  =  𝑃 } )  ·  𝐾 )  =  ( ( 𝐾 ↑ 𝑁 )  ·  𝐾 ) ) | 
						
							| 99 |  | wwlksnfi | ⊢ ( ( Vtx ‘ 𝐺 )  ∈  Fin  →  ( 𝑁  WWalksN  𝐺 )  ∈  Fin ) | 
						
							| 100 | 29 99 | sylbi | ⊢ ( 𝑉  ∈  Fin  →  ( 𝑁  WWalksN  𝐺 )  ∈  Fin ) | 
						
							| 101 | 100 | 3ad2ant1 | ⊢ ( ( 𝑉  ∈  Fin  ∧  𝑃  ∈  𝑉  ∧  𝑁  ∈  ℕ0 )  →  ( 𝑁  WWalksN  𝐺 )  ∈  Fin ) | 
						
							| 102 | 101 | ad2antlr | ⊢ ( ( ( 𝐺  RegUSGraph  𝐾  ∧  ( 𝑉  ∈  Fin  ∧  𝑃  ∈  𝑉  ∧  𝑁  ∈  ℕ0 ) )  ∧  ( ♯ ‘ { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( 𝑤 ‘ 0 )  =  𝑃 } )  =  ( 𝐾 ↑ 𝑁 ) )  →  ( 𝑁  WWalksN  𝐺 )  ∈  Fin ) | 
						
							| 103 |  | rabfi | ⊢ ( ( 𝑁  WWalksN  𝐺 )  ∈  Fin  →  { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( 𝑤 ‘ 0 )  =  𝑃 }  ∈  Fin ) | 
						
							| 104 | 102 103 | syl | ⊢ ( ( ( 𝐺  RegUSGraph  𝐾  ∧  ( 𝑉  ∈  Fin  ∧  𝑃  ∈  𝑉  ∧  𝑁  ∈  ℕ0 ) )  ∧  ( ♯ ‘ { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( 𝑤 ‘ 0 )  =  𝑃 } )  =  ( 𝐾 ↑ 𝑁 ) )  →  { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( 𝑤 ‘ 0 )  =  𝑃 }  ∈  Fin ) | 
						
							| 105 |  | rusgrusgr | ⊢ ( 𝐺  RegUSGraph  𝐾  →  𝐺  ∈  USGraph ) | 
						
							| 106 |  | simp1 | ⊢ ( ( 𝑉  ∈  Fin  ∧  𝑃  ∈  𝑉  ∧  𝑁  ∈  ℕ0 )  →  𝑉  ∈  Fin ) | 
						
							| 107 | 105 106 | anim12i | ⊢ ( ( 𝐺  RegUSGraph  𝐾  ∧  ( 𝑉  ∈  Fin  ∧  𝑃  ∈  𝑉  ∧  𝑁  ∈  ℕ0 ) )  →  ( 𝐺  ∈  USGraph  ∧  𝑉  ∈  Fin ) ) | 
						
							| 108 | 1 | isfusgr | ⊢ ( 𝐺  ∈  FinUSGraph  ↔  ( 𝐺  ∈  USGraph  ∧  𝑉  ∈  Fin ) ) | 
						
							| 109 | 107 108 | sylibr | ⊢ ( ( 𝐺  RegUSGraph  𝐾  ∧  ( 𝑉  ∈  Fin  ∧  𝑃  ∈  𝑉  ∧  𝑁  ∈  ℕ0 ) )  →  𝐺  ∈  FinUSGraph ) | 
						
							| 110 |  | simpl | ⊢ ( ( 𝐺  RegUSGraph  𝐾  ∧  ( 𝑉  ∈  Fin  ∧  𝑃  ∈  𝑉  ∧  𝑁  ∈  ℕ0 ) )  →  𝐺  RegUSGraph  𝐾 ) | 
						
							| 111 |  | ne0i | ⊢ ( 𝑃  ∈  𝑉  →  𝑉  ≠  ∅ ) | 
						
							| 112 | 111 | 3ad2ant2 | ⊢ ( ( 𝑉  ∈  Fin  ∧  𝑃  ∈  𝑉  ∧  𝑁  ∈  ℕ0 )  →  𝑉  ≠  ∅ ) | 
						
							| 113 | 112 | adantl | ⊢ ( ( 𝐺  RegUSGraph  𝐾  ∧  ( 𝑉  ∈  Fin  ∧  𝑃  ∈  𝑉  ∧  𝑁  ∈  ℕ0 ) )  →  𝑉  ≠  ∅ ) | 
						
							| 114 | 1 | frusgrnn0 | ⊢ ( ( 𝐺  ∈  FinUSGraph  ∧  𝐺  RegUSGraph  𝐾  ∧  𝑉  ≠  ∅ )  →  𝐾  ∈  ℕ0 ) | 
						
							| 115 | 109 110 113 114 | syl3anc | ⊢ ( ( 𝐺  RegUSGraph  𝐾  ∧  ( 𝑉  ∈  Fin  ∧  𝑃  ∈  𝑉  ∧  𝑁  ∈  ℕ0 ) )  →  𝐾  ∈  ℕ0 ) | 
						
							| 116 | 115 | nn0cnd | ⊢ ( ( 𝐺  RegUSGraph  𝐾  ∧  ( 𝑉  ∈  Fin  ∧  𝑃  ∈  𝑉  ∧  𝑁  ∈  ℕ0 ) )  →  𝐾  ∈  ℂ ) | 
						
							| 117 | 116 | adantr | ⊢ ( ( ( 𝐺  RegUSGraph  𝐾  ∧  ( 𝑉  ∈  Fin  ∧  𝑃  ∈  𝑉  ∧  𝑁  ∈  ℕ0 ) )  ∧  ( ♯ ‘ { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( 𝑤 ‘ 0 )  =  𝑃 } )  =  ( 𝐾 ↑ 𝑁 ) )  →  𝐾  ∈  ℂ ) | 
						
							| 118 |  | fsumconst | ⊢ ( ( { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( 𝑤 ‘ 0 )  =  𝑃 }  ∈  Fin  ∧  𝐾  ∈  ℂ )  →  Σ 𝑦  ∈  { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( 𝑤 ‘ 0 )  =  𝑃 } 𝐾  =  ( ( ♯ ‘ { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( 𝑤 ‘ 0 )  =  𝑃 } )  ·  𝐾 ) ) | 
						
							| 119 | 104 117 118 | syl2anc | ⊢ ( ( ( 𝐺  RegUSGraph  𝐾  ∧  ( 𝑉  ∈  Fin  ∧  𝑃  ∈  𝑉  ∧  𝑁  ∈  ℕ0 ) )  ∧  ( ♯ ‘ { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( 𝑤 ‘ 0 )  =  𝑃 } )  =  ( 𝐾 ↑ 𝑁 ) )  →  Σ 𝑦  ∈  { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( 𝑤 ‘ 0 )  =  𝑃 } 𝐾  =  ( ( ♯ ‘ { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( 𝑤 ‘ 0 )  =  𝑃 } )  ·  𝐾 ) ) | 
						
							| 120 | 116 4 | expp1d | ⊢ ( ( 𝐺  RegUSGraph  𝐾  ∧  ( 𝑉  ∈  Fin  ∧  𝑃  ∈  𝑉  ∧  𝑁  ∈  ℕ0 ) )  →  ( 𝐾 ↑ ( 𝑁  +  1 ) )  =  ( ( 𝐾 ↑ 𝑁 )  ·  𝐾 ) ) | 
						
							| 121 | 120 | adantr | ⊢ ( ( ( 𝐺  RegUSGraph  𝐾  ∧  ( 𝑉  ∈  Fin  ∧  𝑃  ∈  𝑉  ∧  𝑁  ∈  ℕ0 ) )  ∧  ( ♯ ‘ { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( 𝑤 ‘ 0 )  =  𝑃 } )  =  ( 𝐾 ↑ 𝑁 ) )  →  ( 𝐾 ↑ ( 𝑁  +  1 ) )  =  ( ( 𝐾 ↑ 𝑁 )  ·  𝐾 ) ) | 
						
							| 122 | 98 119 121 | 3eqtr4d | ⊢ ( ( ( 𝐺  RegUSGraph  𝐾  ∧  ( 𝑉  ∈  Fin  ∧  𝑃  ∈  𝑉  ∧  𝑁  ∈  ℕ0 ) )  ∧  ( ♯ ‘ { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( 𝑤 ‘ 0 )  =  𝑃 } )  =  ( 𝐾 ↑ 𝑁 ) )  →  Σ 𝑦  ∈  { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( 𝑤 ‘ 0 )  =  𝑃 } 𝐾  =  ( 𝐾 ↑ ( 𝑁  +  1 ) ) ) | 
						
							| 123 | 96 122 | eqtrd | ⊢ ( ( ( 𝐺  RegUSGraph  𝐾  ∧  ( 𝑉  ∈  Fin  ∧  𝑃  ∈  𝑉  ∧  𝑁  ∈  ℕ0 ) )  ∧  ( ♯ ‘ { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( 𝑤 ‘ 0 )  =  𝑃 } )  =  ( 𝐾 ↑ 𝑁 ) )  →  Σ 𝑦  ∈  { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( 𝑤 ‘ 0 )  =  𝑃 } ( ♯ ‘ { 𝑤  ∈  ( ( 𝑁  +  1 )  WWalksN  𝐺 )  ∣  ( ( 𝑤  prefix  ( 𝑁  +  1 ) )  =  𝑦  ∧  ( 𝑦 ‘ 0 )  =  𝑃  ∧  { ( lastS ‘ 𝑦 ) ,  ( lastS ‘ 𝑤 ) }  ∈  ( Edg ‘ 𝐺 ) ) } )  =  ( 𝐾 ↑ ( 𝑁  +  1 ) ) ) | 
						
							| 124 | 16 40 123 | 3eqtrd | ⊢ ( ( ( 𝐺  RegUSGraph  𝐾  ∧  ( 𝑉  ∈  Fin  ∧  𝑃  ∈  𝑉  ∧  𝑁  ∈  ℕ0 ) )  ∧  ( ♯ ‘ { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( 𝑤 ‘ 0 )  =  𝑃 } )  =  ( 𝐾 ↑ 𝑁 ) )  →  ( ♯ ‘ { 𝑤  ∈  ( ( 𝑁  +  1 )  WWalksN  𝐺 )  ∣  ( 𝑤 ‘ 0 )  =  𝑃 } )  =  ( 𝐾 ↑ ( 𝑁  +  1 ) ) ) | 
						
							| 125 |  | peano2nn0 | ⊢ ( 𝑁  ∈  ℕ0  →  ( 𝑁  +  1 )  ∈  ℕ0 ) | 
						
							| 126 | 125 | 3ad2ant3 | ⊢ ( ( 𝑉  ∈  Fin  ∧  𝑃  ∈  𝑉  ∧  𝑁  ∈  ℕ0 )  →  ( 𝑁  +  1 )  ∈  ℕ0 ) | 
						
							| 127 | 126 | adantl | ⊢ ( ( 𝐺  RegUSGraph  𝐾  ∧  ( 𝑉  ∈  Fin  ∧  𝑃  ∈  𝑉  ∧  𝑁  ∈  ℕ0 ) )  →  ( 𝑁  +  1 )  ∈  ℕ0 ) | 
						
							| 128 | 1 2 | rusgrnumwwlklem | ⊢ ( ( 𝑃  ∈  𝑉  ∧  ( 𝑁  +  1 )  ∈  ℕ0 )  →  ( 𝑃 𝐿 ( 𝑁  +  1 ) )  =  ( ♯ ‘ { 𝑤  ∈  ( ( 𝑁  +  1 )  WWalksN  𝐺 )  ∣  ( 𝑤 ‘ 0 )  =  𝑃 } ) ) | 
						
							| 129 | 128 | eqeq1d | ⊢ ( ( 𝑃  ∈  𝑉  ∧  ( 𝑁  +  1 )  ∈  ℕ0 )  →  ( ( 𝑃 𝐿 ( 𝑁  +  1 ) )  =  ( 𝐾 ↑ ( 𝑁  +  1 ) )  ↔  ( ♯ ‘ { 𝑤  ∈  ( ( 𝑁  +  1 )  WWalksN  𝐺 )  ∣  ( 𝑤 ‘ 0 )  =  𝑃 } )  =  ( 𝐾 ↑ ( 𝑁  +  1 ) ) ) ) | 
						
							| 130 | 3 127 129 | syl2anc | ⊢ ( ( 𝐺  RegUSGraph  𝐾  ∧  ( 𝑉  ∈  Fin  ∧  𝑃  ∈  𝑉  ∧  𝑁  ∈  ℕ0 ) )  →  ( ( 𝑃 𝐿 ( 𝑁  +  1 ) )  =  ( 𝐾 ↑ ( 𝑁  +  1 ) )  ↔  ( ♯ ‘ { 𝑤  ∈  ( ( 𝑁  +  1 )  WWalksN  𝐺 )  ∣  ( 𝑤 ‘ 0 )  =  𝑃 } )  =  ( 𝐾 ↑ ( 𝑁  +  1 ) ) ) ) | 
						
							| 131 | 130 | adantr | ⊢ ( ( ( 𝐺  RegUSGraph  𝐾  ∧  ( 𝑉  ∈  Fin  ∧  𝑃  ∈  𝑉  ∧  𝑁  ∈  ℕ0 ) )  ∧  ( ♯ ‘ { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( 𝑤 ‘ 0 )  =  𝑃 } )  =  ( 𝐾 ↑ 𝑁 ) )  →  ( ( 𝑃 𝐿 ( 𝑁  +  1 ) )  =  ( 𝐾 ↑ ( 𝑁  +  1 ) )  ↔  ( ♯ ‘ { 𝑤  ∈  ( ( 𝑁  +  1 )  WWalksN  𝐺 )  ∣  ( 𝑤 ‘ 0 )  =  𝑃 } )  =  ( 𝐾 ↑ ( 𝑁  +  1 ) ) ) ) | 
						
							| 132 | 124 131 | mpbird | ⊢ ( ( ( 𝐺  RegUSGraph  𝐾  ∧  ( 𝑉  ∈  Fin  ∧  𝑃  ∈  𝑉  ∧  𝑁  ∈  ℕ0 ) )  ∧  ( ♯ ‘ { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( 𝑤 ‘ 0 )  =  𝑃 } )  =  ( 𝐾 ↑ 𝑁 ) )  →  ( 𝑃 𝐿 ( 𝑁  +  1 ) )  =  ( 𝐾 ↑ ( 𝑁  +  1 ) ) ) | 
						
							| 133 | 132 | ex | ⊢ ( ( 𝐺  RegUSGraph  𝐾  ∧  ( 𝑉  ∈  Fin  ∧  𝑃  ∈  𝑉  ∧  𝑁  ∈  ℕ0 ) )  →  ( ( ♯ ‘ { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( 𝑤 ‘ 0 )  =  𝑃 } )  =  ( 𝐾 ↑ 𝑁 )  →  ( 𝑃 𝐿 ( 𝑁  +  1 ) )  =  ( 𝐾 ↑ ( 𝑁  +  1 ) ) ) ) | 
						
							| 134 | 7 133 | sylbid | ⊢ ( ( 𝐺  RegUSGraph  𝐾  ∧  ( 𝑉  ∈  Fin  ∧  𝑃  ∈  𝑉  ∧  𝑁  ∈  ℕ0 ) )  →  ( ( 𝑃 𝐿 𝑁 )  =  ( 𝐾 ↑ 𝑁 )  →  ( 𝑃 𝐿 ( 𝑁  +  1 ) )  =  ( 𝐾 ↑ ( 𝑁  +  1 ) ) ) ) |