| Step | Hyp | Ref | Expression | 
						
							| 1 |  | wwlksnexthasheq.v | ⊢ 𝑉  =  ( Vtx ‘ 𝐺 ) | 
						
							| 2 |  | wwlksnexthasheq.e | ⊢ 𝐸  =  ( Edg ‘ 𝐺 ) | 
						
							| 3 |  | ovex | ⊢ ( ( 𝑁  +  1 )  WWalksN  𝐺 )  ∈  V | 
						
							| 4 | 3 | rabex | ⊢ { 𝑤  ∈  ( ( 𝑁  +  1 )  WWalksN  𝐺 )  ∣  ( ( 𝑤  prefix  ( 𝑁  +  1 ) )  =  𝑊  ∧  { ( lastS ‘ 𝑊 ) ,  ( lastS ‘ 𝑤 ) }  ∈  𝐸 ) }  ∈  V | 
						
							| 5 | 1 2 | wwlksnextbij | ⊢ ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  →  ∃ 𝑓 𝑓 : { 𝑤  ∈  ( ( 𝑁  +  1 )  WWalksN  𝐺 )  ∣  ( ( 𝑤  prefix  ( 𝑁  +  1 ) )  =  𝑊  ∧  { ( lastS ‘ 𝑊 ) ,  ( lastS ‘ 𝑤 ) }  ∈  𝐸 ) } –1-1-onto→ { 𝑛  ∈  𝑉  ∣  { ( lastS ‘ 𝑊 ) ,  𝑛 }  ∈  𝐸 } ) | 
						
							| 6 |  | hasheqf1oi | ⊢ ( { 𝑤  ∈  ( ( 𝑁  +  1 )  WWalksN  𝐺 )  ∣  ( ( 𝑤  prefix  ( 𝑁  +  1 ) )  =  𝑊  ∧  { ( lastS ‘ 𝑊 ) ,  ( lastS ‘ 𝑤 ) }  ∈  𝐸 ) }  ∈  V  →  ( ∃ 𝑓 𝑓 : { 𝑤  ∈  ( ( 𝑁  +  1 )  WWalksN  𝐺 )  ∣  ( ( 𝑤  prefix  ( 𝑁  +  1 ) )  =  𝑊  ∧  { ( lastS ‘ 𝑊 ) ,  ( lastS ‘ 𝑤 ) }  ∈  𝐸 ) } –1-1-onto→ { 𝑛  ∈  𝑉  ∣  { ( lastS ‘ 𝑊 ) ,  𝑛 }  ∈  𝐸 }  →  ( ♯ ‘ { 𝑤  ∈  ( ( 𝑁  +  1 )  WWalksN  𝐺 )  ∣  ( ( 𝑤  prefix  ( 𝑁  +  1 ) )  =  𝑊  ∧  { ( lastS ‘ 𝑊 ) ,  ( lastS ‘ 𝑤 ) }  ∈  𝐸 ) } )  =  ( ♯ ‘ { 𝑛  ∈  𝑉  ∣  { ( lastS ‘ 𝑊 ) ,  𝑛 }  ∈  𝐸 } ) ) ) | 
						
							| 7 | 4 5 6 | mpsyl | ⊢ ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  →  ( ♯ ‘ { 𝑤  ∈  ( ( 𝑁  +  1 )  WWalksN  𝐺 )  ∣  ( ( 𝑤  prefix  ( 𝑁  +  1 ) )  =  𝑊  ∧  { ( lastS ‘ 𝑊 ) ,  ( lastS ‘ 𝑤 ) }  ∈  𝐸 ) } )  =  ( ♯ ‘ { 𝑛  ∈  𝑉  ∣  { ( lastS ‘ 𝑊 ) ,  𝑛 }  ∈  𝐸 } ) ) |