| Step | Hyp | Ref | Expression | 
						
							| 1 |  | wwlksnextbij.v | ⊢ 𝑉  =  ( Vtx ‘ 𝐺 ) | 
						
							| 2 |  | wwlksnextbij.e | ⊢ 𝐸  =  ( Edg ‘ 𝐺 ) | 
						
							| 3 |  | ovexd | ⊢ ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  →  ( ( 𝑁  +  1 )  WWalksN  𝐺 )  ∈  V ) | 
						
							| 4 |  | rabexg | ⊢ ( ( ( 𝑁  +  1 )  WWalksN  𝐺 )  ∈  V  →  { 𝑡  ∈  ( ( 𝑁  +  1 )  WWalksN  𝐺 )  ∣  ( ( 𝑡  prefix  ( 𝑁  +  1 ) )  =  𝑊  ∧  { ( lastS ‘ 𝑊 ) ,  ( lastS ‘ 𝑡 ) }  ∈  𝐸 ) }  ∈  V ) | 
						
							| 5 |  | mptexg | ⊢ ( { 𝑡  ∈  ( ( 𝑁  +  1 )  WWalksN  𝐺 )  ∣  ( ( 𝑡  prefix  ( 𝑁  +  1 ) )  =  𝑊  ∧  { ( lastS ‘ 𝑊 ) ,  ( lastS ‘ 𝑡 ) }  ∈  𝐸 ) }  ∈  V  →  ( 𝑥  ∈  { 𝑡  ∈  ( ( 𝑁  +  1 )  WWalksN  𝐺 )  ∣  ( ( 𝑡  prefix  ( 𝑁  +  1 ) )  =  𝑊  ∧  { ( lastS ‘ 𝑊 ) ,  ( lastS ‘ 𝑡 ) }  ∈  𝐸 ) }  ↦  ( lastS ‘ 𝑥 ) )  ∈  V ) | 
						
							| 6 | 3 4 5 | 3syl | ⊢ ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  →  ( 𝑥  ∈  { 𝑡  ∈  ( ( 𝑁  +  1 )  WWalksN  𝐺 )  ∣  ( ( 𝑡  prefix  ( 𝑁  +  1 ) )  =  𝑊  ∧  { ( lastS ‘ 𝑊 ) ,  ( lastS ‘ 𝑡 ) }  ∈  𝐸 ) }  ↦  ( lastS ‘ 𝑥 ) )  ∈  V ) | 
						
							| 7 |  | eqid | ⊢ { 𝑤  ∈  Word  𝑉  ∣  ( ( ♯ ‘ 𝑤 )  =  ( 𝑁  +  2 )  ∧  ( 𝑤  prefix  ( 𝑁  +  1 ) )  =  𝑊  ∧  { ( lastS ‘ 𝑊 ) ,  ( lastS ‘ 𝑤 ) }  ∈  𝐸 ) }  =  { 𝑤  ∈  Word  𝑉  ∣  ( ( ♯ ‘ 𝑤 )  =  ( 𝑁  +  2 )  ∧  ( 𝑤  prefix  ( 𝑁  +  1 ) )  =  𝑊  ∧  { ( lastS ‘ 𝑊 ) ,  ( lastS ‘ 𝑤 ) }  ∈  𝐸 ) } | 
						
							| 8 |  | preq2 | ⊢ ( 𝑛  =  𝑝  →  { ( lastS ‘ 𝑊 ) ,  𝑛 }  =  { ( lastS ‘ 𝑊 ) ,  𝑝 } ) | 
						
							| 9 | 8 | eleq1d | ⊢ ( 𝑛  =  𝑝  →  ( { ( lastS ‘ 𝑊 ) ,  𝑛 }  ∈  𝐸  ↔  { ( lastS ‘ 𝑊 ) ,  𝑝 }  ∈  𝐸 ) ) | 
						
							| 10 | 9 | cbvrabv | ⊢ { 𝑛  ∈  𝑉  ∣  { ( lastS ‘ 𝑊 ) ,  𝑛 }  ∈  𝐸 }  =  { 𝑝  ∈  𝑉  ∣  { ( lastS ‘ 𝑊 ) ,  𝑝 }  ∈  𝐸 } | 
						
							| 11 |  | fveqeq2 | ⊢ ( 𝑡  =  𝑤  →  ( ( ♯ ‘ 𝑡 )  =  ( 𝑁  +  2 )  ↔  ( ♯ ‘ 𝑤 )  =  ( 𝑁  +  2 ) ) ) | 
						
							| 12 |  | oveq1 | ⊢ ( 𝑡  =  𝑤  →  ( 𝑡  prefix  ( 𝑁  +  1 ) )  =  ( 𝑤  prefix  ( 𝑁  +  1 ) ) ) | 
						
							| 13 | 12 | eqeq1d | ⊢ ( 𝑡  =  𝑤  →  ( ( 𝑡  prefix  ( 𝑁  +  1 ) )  =  𝑊  ↔  ( 𝑤  prefix  ( 𝑁  +  1 ) )  =  𝑊 ) ) | 
						
							| 14 |  | fveq2 | ⊢ ( 𝑡  =  𝑤  →  ( lastS ‘ 𝑡 )  =  ( lastS ‘ 𝑤 ) ) | 
						
							| 15 | 14 | preq2d | ⊢ ( 𝑡  =  𝑤  →  { ( lastS ‘ 𝑊 ) ,  ( lastS ‘ 𝑡 ) }  =  { ( lastS ‘ 𝑊 ) ,  ( lastS ‘ 𝑤 ) } ) | 
						
							| 16 | 15 | eleq1d | ⊢ ( 𝑡  =  𝑤  →  ( { ( lastS ‘ 𝑊 ) ,  ( lastS ‘ 𝑡 ) }  ∈  𝐸  ↔  { ( lastS ‘ 𝑊 ) ,  ( lastS ‘ 𝑤 ) }  ∈  𝐸 ) ) | 
						
							| 17 | 11 13 16 | 3anbi123d | ⊢ ( 𝑡  =  𝑤  →  ( ( ( ♯ ‘ 𝑡 )  =  ( 𝑁  +  2 )  ∧  ( 𝑡  prefix  ( 𝑁  +  1 ) )  =  𝑊  ∧  { ( lastS ‘ 𝑊 ) ,  ( lastS ‘ 𝑡 ) }  ∈  𝐸 )  ↔  ( ( ♯ ‘ 𝑤 )  =  ( 𝑁  +  2 )  ∧  ( 𝑤  prefix  ( 𝑁  +  1 ) )  =  𝑊  ∧  { ( lastS ‘ 𝑊 ) ,  ( lastS ‘ 𝑤 ) }  ∈  𝐸 ) ) ) | 
						
							| 18 | 17 | cbvrabv | ⊢ { 𝑡  ∈  Word  𝑉  ∣  ( ( ♯ ‘ 𝑡 )  =  ( 𝑁  +  2 )  ∧  ( 𝑡  prefix  ( 𝑁  +  1 ) )  =  𝑊  ∧  { ( lastS ‘ 𝑊 ) ,  ( lastS ‘ 𝑡 ) }  ∈  𝐸 ) }  =  { 𝑤  ∈  Word  𝑉  ∣  ( ( ♯ ‘ 𝑤 )  =  ( 𝑁  +  2 )  ∧  ( 𝑤  prefix  ( 𝑁  +  1 ) )  =  𝑊  ∧  { ( lastS ‘ 𝑊 ) ,  ( lastS ‘ 𝑤 ) }  ∈  𝐸 ) } | 
						
							| 19 | 18 | mpteq1i | ⊢ ( 𝑥  ∈  { 𝑡  ∈  Word  𝑉  ∣  ( ( ♯ ‘ 𝑡 )  =  ( 𝑁  +  2 )  ∧  ( 𝑡  prefix  ( 𝑁  +  1 ) )  =  𝑊  ∧  { ( lastS ‘ 𝑊 ) ,  ( lastS ‘ 𝑡 ) }  ∈  𝐸 ) }  ↦  ( lastS ‘ 𝑥 ) )  =  ( 𝑥  ∈  { 𝑤  ∈  Word  𝑉  ∣  ( ( ♯ ‘ 𝑤 )  =  ( 𝑁  +  2 )  ∧  ( 𝑤  prefix  ( 𝑁  +  1 ) )  =  𝑊  ∧  { ( lastS ‘ 𝑊 ) ,  ( lastS ‘ 𝑤 ) }  ∈  𝐸 ) }  ↦  ( lastS ‘ 𝑥 ) ) | 
						
							| 20 | 1 2 7 10 19 | wwlksnextbij0 | ⊢ ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  →  ( 𝑥  ∈  { 𝑡  ∈  Word  𝑉  ∣  ( ( ♯ ‘ 𝑡 )  =  ( 𝑁  +  2 )  ∧  ( 𝑡  prefix  ( 𝑁  +  1 ) )  =  𝑊  ∧  { ( lastS ‘ 𝑊 ) ,  ( lastS ‘ 𝑡 ) }  ∈  𝐸 ) }  ↦  ( lastS ‘ 𝑥 ) ) : { 𝑤  ∈  Word  𝑉  ∣  ( ( ♯ ‘ 𝑤 )  =  ( 𝑁  +  2 )  ∧  ( 𝑤  prefix  ( 𝑁  +  1 ) )  =  𝑊  ∧  { ( lastS ‘ 𝑊 ) ,  ( lastS ‘ 𝑤 ) }  ∈  𝐸 ) } –1-1-onto→ { 𝑛  ∈  𝑉  ∣  { ( lastS ‘ 𝑊 ) ,  𝑛 }  ∈  𝐸 } ) | 
						
							| 21 |  | eqid | ⊢ { 𝑡  ∈  Word  𝑉  ∣  ( ( ♯ ‘ 𝑡 )  =  ( 𝑁  +  2 )  ∧  ( 𝑡  prefix  ( 𝑁  +  1 ) )  =  𝑊  ∧  { ( lastS ‘ 𝑊 ) ,  ( lastS ‘ 𝑡 ) }  ∈  𝐸 ) }  =  { 𝑡  ∈  Word  𝑉  ∣  ( ( ♯ ‘ 𝑡 )  =  ( 𝑁  +  2 )  ∧  ( 𝑡  prefix  ( 𝑁  +  1 ) )  =  𝑊  ∧  { ( lastS ‘ 𝑊 ) ,  ( lastS ‘ 𝑡 ) }  ∈  𝐸 ) } | 
						
							| 22 | 1 2 21 | wwlksnextwrd | ⊢ ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  →  { 𝑡  ∈  Word  𝑉  ∣  ( ( ♯ ‘ 𝑡 )  =  ( 𝑁  +  2 )  ∧  ( 𝑡  prefix  ( 𝑁  +  1 ) )  =  𝑊  ∧  { ( lastS ‘ 𝑊 ) ,  ( lastS ‘ 𝑡 ) }  ∈  𝐸 ) }  =  { 𝑡  ∈  ( ( 𝑁  +  1 )  WWalksN  𝐺 )  ∣  ( ( 𝑡  prefix  ( 𝑁  +  1 ) )  =  𝑊  ∧  { ( lastS ‘ 𝑊 ) ,  ( lastS ‘ 𝑡 ) }  ∈  𝐸 ) } ) | 
						
							| 23 | 22 | eqcomd | ⊢ ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  →  { 𝑡  ∈  ( ( 𝑁  +  1 )  WWalksN  𝐺 )  ∣  ( ( 𝑡  prefix  ( 𝑁  +  1 ) )  =  𝑊  ∧  { ( lastS ‘ 𝑊 ) ,  ( lastS ‘ 𝑡 ) }  ∈  𝐸 ) }  =  { 𝑡  ∈  Word  𝑉  ∣  ( ( ♯ ‘ 𝑡 )  =  ( 𝑁  +  2 )  ∧  ( 𝑡  prefix  ( 𝑁  +  1 ) )  =  𝑊  ∧  { ( lastS ‘ 𝑊 ) ,  ( lastS ‘ 𝑡 ) }  ∈  𝐸 ) } ) | 
						
							| 24 | 23 | mpteq1d | ⊢ ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  →  ( 𝑥  ∈  { 𝑡  ∈  ( ( 𝑁  +  1 )  WWalksN  𝐺 )  ∣  ( ( 𝑡  prefix  ( 𝑁  +  1 ) )  =  𝑊  ∧  { ( lastS ‘ 𝑊 ) ,  ( lastS ‘ 𝑡 ) }  ∈  𝐸 ) }  ↦  ( lastS ‘ 𝑥 ) )  =  ( 𝑥  ∈  { 𝑡  ∈  Word  𝑉  ∣  ( ( ♯ ‘ 𝑡 )  =  ( 𝑁  +  2 )  ∧  ( 𝑡  prefix  ( 𝑁  +  1 ) )  =  𝑊  ∧  { ( lastS ‘ 𝑊 ) ,  ( lastS ‘ 𝑡 ) }  ∈  𝐸 ) }  ↦  ( lastS ‘ 𝑥 ) ) ) | 
						
							| 25 | 1 2 7 | wwlksnextwrd | ⊢ ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  →  { 𝑤  ∈  Word  𝑉  ∣  ( ( ♯ ‘ 𝑤 )  =  ( 𝑁  +  2 )  ∧  ( 𝑤  prefix  ( 𝑁  +  1 ) )  =  𝑊  ∧  { ( lastS ‘ 𝑊 ) ,  ( lastS ‘ 𝑤 ) }  ∈  𝐸 ) }  =  { 𝑤  ∈  ( ( 𝑁  +  1 )  WWalksN  𝐺 )  ∣  ( ( 𝑤  prefix  ( 𝑁  +  1 ) )  =  𝑊  ∧  { ( lastS ‘ 𝑊 ) ,  ( lastS ‘ 𝑤 ) }  ∈  𝐸 ) } ) | 
						
							| 26 | 25 | eqcomd | ⊢ ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  →  { 𝑤  ∈  ( ( 𝑁  +  1 )  WWalksN  𝐺 )  ∣  ( ( 𝑤  prefix  ( 𝑁  +  1 ) )  =  𝑊  ∧  { ( lastS ‘ 𝑊 ) ,  ( lastS ‘ 𝑤 ) }  ∈  𝐸 ) }  =  { 𝑤  ∈  Word  𝑉  ∣  ( ( ♯ ‘ 𝑤 )  =  ( 𝑁  +  2 )  ∧  ( 𝑤  prefix  ( 𝑁  +  1 ) )  =  𝑊  ∧  { ( lastS ‘ 𝑊 ) ,  ( lastS ‘ 𝑤 ) }  ∈  𝐸 ) } ) | 
						
							| 27 |  | eqidd | ⊢ ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  →  { 𝑛  ∈  𝑉  ∣  { ( lastS ‘ 𝑊 ) ,  𝑛 }  ∈  𝐸 }  =  { 𝑛  ∈  𝑉  ∣  { ( lastS ‘ 𝑊 ) ,  𝑛 }  ∈  𝐸 } ) | 
						
							| 28 | 24 26 27 | f1oeq123d | ⊢ ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  →  ( ( 𝑥  ∈  { 𝑡  ∈  ( ( 𝑁  +  1 )  WWalksN  𝐺 )  ∣  ( ( 𝑡  prefix  ( 𝑁  +  1 ) )  =  𝑊  ∧  { ( lastS ‘ 𝑊 ) ,  ( lastS ‘ 𝑡 ) }  ∈  𝐸 ) }  ↦  ( lastS ‘ 𝑥 ) ) : { 𝑤  ∈  ( ( 𝑁  +  1 )  WWalksN  𝐺 )  ∣  ( ( 𝑤  prefix  ( 𝑁  +  1 ) )  =  𝑊  ∧  { ( lastS ‘ 𝑊 ) ,  ( lastS ‘ 𝑤 ) }  ∈  𝐸 ) } –1-1-onto→ { 𝑛  ∈  𝑉  ∣  { ( lastS ‘ 𝑊 ) ,  𝑛 }  ∈  𝐸 }  ↔  ( 𝑥  ∈  { 𝑡  ∈  Word  𝑉  ∣  ( ( ♯ ‘ 𝑡 )  =  ( 𝑁  +  2 )  ∧  ( 𝑡  prefix  ( 𝑁  +  1 ) )  =  𝑊  ∧  { ( lastS ‘ 𝑊 ) ,  ( lastS ‘ 𝑡 ) }  ∈  𝐸 ) }  ↦  ( lastS ‘ 𝑥 ) ) : { 𝑤  ∈  Word  𝑉  ∣  ( ( ♯ ‘ 𝑤 )  =  ( 𝑁  +  2 )  ∧  ( 𝑤  prefix  ( 𝑁  +  1 ) )  =  𝑊  ∧  { ( lastS ‘ 𝑊 ) ,  ( lastS ‘ 𝑤 ) }  ∈  𝐸 ) } –1-1-onto→ { 𝑛  ∈  𝑉  ∣  { ( lastS ‘ 𝑊 ) ,  𝑛 }  ∈  𝐸 } ) ) | 
						
							| 29 | 20 28 | mpbird | ⊢ ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  →  ( 𝑥  ∈  { 𝑡  ∈  ( ( 𝑁  +  1 )  WWalksN  𝐺 )  ∣  ( ( 𝑡  prefix  ( 𝑁  +  1 ) )  =  𝑊  ∧  { ( lastS ‘ 𝑊 ) ,  ( lastS ‘ 𝑡 ) }  ∈  𝐸 ) }  ↦  ( lastS ‘ 𝑥 ) ) : { 𝑤  ∈  ( ( 𝑁  +  1 )  WWalksN  𝐺 )  ∣  ( ( 𝑤  prefix  ( 𝑁  +  1 ) )  =  𝑊  ∧  { ( lastS ‘ 𝑊 ) ,  ( lastS ‘ 𝑤 ) }  ∈  𝐸 ) } –1-1-onto→ { 𝑛  ∈  𝑉  ∣  { ( lastS ‘ 𝑊 ) ,  𝑛 }  ∈  𝐸 } ) | 
						
							| 30 |  | f1oeq1 | ⊢ ( 𝑓  =  ( 𝑥  ∈  { 𝑡  ∈  ( ( 𝑁  +  1 )  WWalksN  𝐺 )  ∣  ( ( 𝑡  prefix  ( 𝑁  +  1 ) )  =  𝑊  ∧  { ( lastS ‘ 𝑊 ) ,  ( lastS ‘ 𝑡 ) }  ∈  𝐸 ) }  ↦  ( lastS ‘ 𝑥 ) )  →  ( 𝑓 : { 𝑤  ∈  ( ( 𝑁  +  1 )  WWalksN  𝐺 )  ∣  ( ( 𝑤  prefix  ( 𝑁  +  1 ) )  =  𝑊  ∧  { ( lastS ‘ 𝑊 ) ,  ( lastS ‘ 𝑤 ) }  ∈  𝐸 ) } –1-1-onto→ { 𝑛  ∈  𝑉  ∣  { ( lastS ‘ 𝑊 ) ,  𝑛 }  ∈  𝐸 }  ↔  ( 𝑥  ∈  { 𝑡  ∈  ( ( 𝑁  +  1 )  WWalksN  𝐺 )  ∣  ( ( 𝑡  prefix  ( 𝑁  +  1 ) )  =  𝑊  ∧  { ( lastS ‘ 𝑊 ) ,  ( lastS ‘ 𝑡 ) }  ∈  𝐸 ) }  ↦  ( lastS ‘ 𝑥 ) ) : { 𝑤  ∈  ( ( 𝑁  +  1 )  WWalksN  𝐺 )  ∣  ( ( 𝑤  prefix  ( 𝑁  +  1 ) )  =  𝑊  ∧  { ( lastS ‘ 𝑊 ) ,  ( lastS ‘ 𝑤 ) }  ∈  𝐸 ) } –1-1-onto→ { 𝑛  ∈  𝑉  ∣  { ( lastS ‘ 𝑊 ) ,  𝑛 }  ∈  𝐸 } ) ) | 
						
							| 31 | 6 29 30 | spcedv | ⊢ ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  →  ∃ 𝑓 𝑓 : { 𝑤  ∈  ( ( 𝑁  +  1 )  WWalksN  𝐺 )  ∣  ( ( 𝑤  prefix  ( 𝑁  +  1 ) )  =  𝑊  ∧  { ( lastS ‘ 𝑊 ) ,  ( lastS ‘ 𝑤 ) }  ∈  𝐸 ) } –1-1-onto→ { 𝑛  ∈  𝑉  ∣  { ( lastS ‘ 𝑊 ) ,  𝑛 }  ∈  𝐸 } ) |