| Step | Hyp | Ref | Expression | 
						
							| 1 |  | wwlksnextbij0.v | ⊢ 𝑉  =  ( Vtx ‘ 𝐺 ) | 
						
							| 2 |  | wwlksnextbij0.e | ⊢ 𝐸  =  ( Edg ‘ 𝐺 ) | 
						
							| 3 |  | wwlksnextbij0.d | ⊢ 𝐷  =  { 𝑤  ∈  Word  𝑉  ∣  ( ( ♯ ‘ 𝑤 )  =  ( 𝑁  +  2 )  ∧  ( 𝑤  prefix  ( 𝑁  +  1 ) )  =  𝑊  ∧  { ( lastS ‘ 𝑊 ) ,  ( lastS ‘ 𝑤 ) }  ∈  𝐸 ) } | 
						
							| 4 |  | 3anass | ⊢ ( ( ( ♯ ‘ 𝑤 )  =  ( 𝑁  +  2 )  ∧  ( 𝑤  prefix  ( 𝑁  +  1 ) )  =  𝑊  ∧  { ( lastS ‘ 𝑊 ) ,  ( lastS ‘ 𝑤 ) }  ∈  𝐸 )  ↔  ( ( ♯ ‘ 𝑤 )  =  ( 𝑁  +  2 )  ∧  ( ( 𝑤  prefix  ( 𝑁  +  1 ) )  =  𝑊  ∧  { ( lastS ‘ 𝑊 ) ,  ( lastS ‘ 𝑤 ) }  ∈  𝐸 ) ) ) | 
						
							| 5 | 4 | bianass | ⊢ ( ( 𝑤  ∈  Word  𝑉  ∧  ( ( ♯ ‘ 𝑤 )  =  ( 𝑁  +  2 )  ∧  ( 𝑤  prefix  ( 𝑁  +  1 ) )  =  𝑊  ∧  { ( lastS ‘ 𝑊 ) ,  ( lastS ‘ 𝑤 ) }  ∈  𝐸 ) )  ↔  ( ( 𝑤  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑤 )  =  ( 𝑁  +  2 ) )  ∧  ( ( 𝑤  prefix  ( 𝑁  +  1 ) )  =  𝑊  ∧  { ( lastS ‘ 𝑊 ) ,  ( lastS ‘ 𝑤 ) }  ∈  𝐸 ) ) ) | 
						
							| 6 | 1 | wwlknbp | ⊢ ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  →  ( 𝐺  ∈  V  ∧  𝑁  ∈  ℕ0  ∧  𝑊  ∈  Word  𝑉 ) ) | 
						
							| 7 |  | simpl | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( ( 𝑤  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑤 )  =  ( 𝑁  +  2 ) )  ∧  ( ( 𝑤  prefix  ( 𝑁  +  1 ) )  =  𝑊  ∧  { ( lastS ‘ 𝑊 ) ,  ( lastS ‘ 𝑤 ) }  ∈  𝐸 ) ) )  →  𝑁  ∈  ℕ0 ) | 
						
							| 8 |  | simpl | ⊢ ( ( 𝑤  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑤 )  =  ( 𝑁  +  2 ) )  →  𝑤  ∈  Word  𝑉 ) | 
						
							| 9 |  | nn0re | ⊢ ( 𝑁  ∈  ℕ0  →  𝑁  ∈  ℝ ) | 
						
							| 10 |  | 2re | ⊢ 2  ∈  ℝ | 
						
							| 11 | 10 | a1i | ⊢ ( 𝑁  ∈  ℕ0  →  2  ∈  ℝ ) | 
						
							| 12 |  | nn0ge0 | ⊢ ( 𝑁  ∈  ℕ0  →  0  ≤  𝑁 ) | 
						
							| 13 |  | 2pos | ⊢ 0  <  2 | 
						
							| 14 | 13 | a1i | ⊢ ( 𝑁  ∈  ℕ0  →  0  <  2 ) | 
						
							| 15 | 9 11 12 14 | addgegt0d | ⊢ ( 𝑁  ∈  ℕ0  →  0  <  ( 𝑁  +  2 ) ) | 
						
							| 16 | 15 | adantr | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( 𝑤  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑤 )  =  ( 𝑁  +  2 ) ) )  →  0  <  ( 𝑁  +  2 ) ) | 
						
							| 17 |  | breq2 | ⊢ ( ( ♯ ‘ 𝑤 )  =  ( 𝑁  +  2 )  →  ( 0  <  ( ♯ ‘ 𝑤 )  ↔  0  <  ( 𝑁  +  2 ) ) ) | 
						
							| 18 | 17 | ad2antll | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( 𝑤  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑤 )  =  ( 𝑁  +  2 ) ) )  →  ( 0  <  ( ♯ ‘ 𝑤 )  ↔  0  <  ( 𝑁  +  2 ) ) ) | 
						
							| 19 | 16 18 | mpbird | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( 𝑤  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑤 )  =  ( 𝑁  +  2 ) ) )  →  0  <  ( ♯ ‘ 𝑤 ) ) | 
						
							| 20 |  | hashgt0n0 | ⊢ ( ( 𝑤  ∈  Word  𝑉  ∧  0  <  ( ♯ ‘ 𝑤 ) )  →  𝑤  ≠  ∅ ) | 
						
							| 21 | 8 19 20 | syl2an2 | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( 𝑤  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑤 )  =  ( 𝑁  +  2 ) ) )  →  𝑤  ≠  ∅ ) | 
						
							| 22 |  | lswcl | ⊢ ( ( 𝑤  ∈  Word  𝑉  ∧  𝑤  ≠  ∅ )  →  ( lastS ‘ 𝑤 )  ∈  𝑉 ) | 
						
							| 23 | 8 21 22 | syl2an2 | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( 𝑤  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑤 )  =  ( 𝑁  +  2 ) ) )  →  ( lastS ‘ 𝑤 )  ∈  𝑉 ) | 
						
							| 24 | 23 | adantrr | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( ( 𝑤  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑤 )  =  ( 𝑁  +  2 ) )  ∧  ( ( 𝑤  prefix  ( 𝑁  +  1 ) )  =  𝑊  ∧  { ( lastS ‘ 𝑊 ) ,  ( lastS ‘ 𝑤 ) }  ∈  𝐸 ) ) )  →  ( lastS ‘ 𝑤 )  ∈  𝑉 ) | 
						
							| 25 |  | pfxcl | ⊢ ( 𝑤  ∈  Word  𝑉  →  ( 𝑤  prefix  ( 𝑁  +  1 ) )  ∈  Word  𝑉 ) | 
						
							| 26 |  | eleq1 | ⊢ ( 𝑊  =  ( 𝑤  prefix  ( 𝑁  +  1 ) )  →  ( 𝑊  ∈  Word  𝑉  ↔  ( 𝑤  prefix  ( 𝑁  +  1 ) )  ∈  Word  𝑉 ) ) | 
						
							| 27 | 25 26 | imbitrrid | ⊢ ( 𝑊  =  ( 𝑤  prefix  ( 𝑁  +  1 ) )  →  ( 𝑤  ∈  Word  𝑉  →  𝑊  ∈  Word  𝑉 ) ) | 
						
							| 28 | 27 | eqcoms | ⊢ ( ( 𝑤  prefix  ( 𝑁  +  1 ) )  =  𝑊  →  ( 𝑤  ∈  Word  𝑉  →  𝑊  ∈  Word  𝑉 ) ) | 
						
							| 29 | 28 | adantr | ⊢ ( ( ( 𝑤  prefix  ( 𝑁  +  1 ) )  =  𝑊  ∧  { ( lastS ‘ 𝑊 ) ,  ( lastS ‘ 𝑤 ) }  ∈  𝐸 )  →  ( 𝑤  ∈  Word  𝑉  →  𝑊  ∈  Word  𝑉 ) ) | 
						
							| 30 | 29 | com12 | ⊢ ( 𝑤  ∈  Word  𝑉  →  ( ( ( 𝑤  prefix  ( 𝑁  +  1 ) )  =  𝑊  ∧  { ( lastS ‘ 𝑊 ) ,  ( lastS ‘ 𝑤 ) }  ∈  𝐸 )  →  𝑊  ∈  Word  𝑉 ) ) | 
						
							| 31 | 30 | adantr | ⊢ ( ( 𝑤  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑤 )  =  ( 𝑁  +  2 ) )  →  ( ( ( 𝑤  prefix  ( 𝑁  +  1 ) )  =  𝑊  ∧  { ( lastS ‘ 𝑊 ) ,  ( lastS ‘ 𝑤 ) }  ∈  𝐸 )  →  𝑊  ∈  Word  𝑉 ) ) | 
						
							| 32 | 31 | imp | ⊢ ( ( ( 𝑤  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑤 )  =  ( 𝑁  +  2 ) )  ∧  ( ( 𝑤  prefix  ( 𝑁  +  1 ) )  =  𝑊  ∧  { ( lastS ‘ 𝑊 ) ,  ( lastS ‘ 𝑤 ) }  ∈  𝐸 ) )  →  𝑊  ∈  Word  𝑉 ) | 
						
							| 33 | 32 | adantl | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( ( 𝑤  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑤 )  =  ( 𝑁  +  2 ) )  ∧  ( ( 𝑤  prefix  ( 𝑁  +  1 ) )  =  𝑊  ∧  { ( lastS ‘ 𝑊 ) ,  ( lastS ‘ 𝑤 ) }  ∈  𝐸 ) ) )  →  𝑊  ∈  Word  𝑉 ) | 
						
							| 34 |  | oveq1 | ⊢ ( 𝑊  =  ( 𝑤  prefix  ( 𝑁  +  1 ) )  →  ( 𝑊  ++  〈“ ( lastS ‘ 𝑤 ) ”〉 )  =  ( ( 𝑤  prefix  ( 𝑁  +  1 ) )  ++  〈“ ( lastS ‘ 𝑤 ) ”〉 ) ) | 
						
							| 35 | 34 | eqcoms | ⊢ ( ( 𝑤  prefix  ( 𝑁  +  1 ) )  =  𝑊  →  ( 𝑊  ++  〈“ ( lastS ‘ 𝑤 ) ”〉 )  =  ( ( 𝑤  prefix  ( 𝑁  +  1 ) )  ++  〈“ ( lastS ‘ 𝑤 ) ”〉 ) ) | 
						
							| 36 | 35 | adantr | ⊢ ( ( ( 𝑤  prefix  ( 𝑁  +  1 ) )  =  𝑊  ∧  { ( lastS ‘ 𝑊 ) ,  ( lastS ‘ 𝑤 ) }  ∈  𝐸 )  →  ( 𝑊  ++  〈“ ( lastS ‘ 𝑤 ) ”〉 )  =  ( ( 𝑤  prefix  ( 𝑁  +  1 ) )  ++  〈“ ( lastS ‘ 𝑤 ) ”〉 ) ) | 
						
							| 37 | 36 | ad2antll | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( ( 𝑤  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑤 )  =  ( 𝑁  +  2 ) )  ∧  ( ( 𝑤  prefix  ( 𝑁  +  1 ) )  =  𝑊  ∧  { ( lastS ‘ 𝑊 ) ,  ( lastS ‘ 𝑤 ) }  ∈  𝐸 ) ) )  →  ( 𝑊  ++  〈“ ( lastS ‘ 𝑤 ) ”〉 )  =  ( ( 𝑤  prefix  ( 𝑁  +  1 ) )  ++  〈“ ( lastS ‘ 𝑤 ) ”〉 ) ) | 
						
							| 38 |  | oveq1 | ⊢ ( ( ♯ ‘ 𝑤 )  =  ( 𝑁  +  2 )  →  ( ( ♯ ‘ 𝑤 )  −  1 )  =  ( ( 𝑁  +  2 )  −  1 ) ) | 
						
							| 39 | 38 | adantl | ⊢ ( ( 𝑤  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑤 )  =  ( 𝑁  +  2 ) )  →  ( ( ♯ ‘ 𝑤 )  −  1 )  =  ( ( 𝑁  +  2 )  −  1 ) ) | 
						
							| 40 |  | nn0cn | ⊢ ( 𝑁  ∈  ℕ0  →  𝑁  ∈  ℂ ) | 
						
							| 41 |  | 2cnd | ⊢ ( 𝑁  ∈  ℕ0  →  2  ∈  ℂ ) | 
						
							| 42 |  | 1cnd | ⊢ ( 𝑁  ∈  ℕ0  →  1  ∈  ℂ ) | 
						
							| 43 | 40 41 42 | addsubassd | ⊢ ( 𝑁  ∈  ℕ0  →  ( ( 𝑁  +  2 )  −  1 )  =  ( 𝑁  +  ( 2  −  1 ) ) ) | 
						
							| 44 |  | 2m1e1 | ⊢ ( 2  −  1 )  =  1 | 
						
							| 45 | 44 | a1i | ⊢ ( 𝑁  ∈  ℕ0  →  ( 2  −  1 )  =  1 ) | 
						
							| 46 | 45 | oveq2d | ⊢ ( 𝑁  ∈  ℕ0  →  ( 𝑁  +  ( 2  −  1 ) )  =  ( 𝑁  +  1 ) ) | 
						
							| 47 | 43 46 | eqtrd | ⊢ ( 𝑁  ∈  ℕ0  →  ( ( 𝑁  +  2 )  −  1 )  =  ( 𝑁  +  1 ) ) | 
						
							| 48 | 39 47 | sylan9eqr | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( 𝑤  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑤 )  =  ( 𝑁  +  2 ) ) )  →  ( ( ♯ ‘ 𝑤 )  −  1 )  =  ( 𝑁  +  1 ) ) | 
						
							| 49 | 48 | oveq2d | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( 𝑤  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑤 )  =  ( 𝑁  +  2 ) ) )  →  ( 𝑤  prefix  ( ( ♯ ‘ 𝑤 )  −  1 ) )  =  ( 𝑤  prefix  ( 𝑁  +  1 ) ) ) | 
						
							| 50 | 49 | oveq1d | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( 𝑤  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑤 )  =  ( 𝑁  +  2 ) ) )  →  ( ( 𝑤  prefix  ( ( ♯ ‘ 𝑤 )  −  1 ) )  ++  〈“ ( lastS ‘ 𝑤 ) ”〉 )  =  ( ( 𝑤  prefix  ( 𝑁  +  1 ) )  ++  〈“ ( lastS ‘ 𝑤 ) ”〉 ) ) | 
						
							| 51 |  | pfxlswccat | ⊢ ( ( 𝑤  ∈  Word  𝑉  ∧  𝑤  ≠  ∅ )  →  ( ( 𝑤  prefix  ( ( ♯ ‘ 𝑤 )  −  1 ) )  ++  〈“ ( lastS ‘ 𝑤 ) ”〉 )  =  𝑤 ) | 
						
							| 52 | 8 21 51 | syl2an2 | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( 𝑤  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑤 )  =  ( 𝑁  +  2 ) ) )  →  ( ( 𝑤  prefix  ( ( ♯ ‘ 𝑤 )  −  1 ) )  ++  〈“ ( lastS ‘ 𝑤 ) ”〉 )  =  𝑤 ) | 
						
							| 53 | 50 52 | eqtr3d | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( 𝑤  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑤 )  =  ( 𝑁  +  2 ) ) )  →  ( ( 𝑤  prefix  ( 𝑁  +  1 ) )  ++  〈“ ( lastS ‘ 𝑤 ) ”〉 )  =  𝑤 ) | 
						
							| 54 | 53 | adantrr | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( ( 𝑤  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑤 )  =  ( 𝑁  +  2 ) )  ∧  ( ( 𝑤  prefix  ( 𝑁  +  1 ) )  =  𝑊  ∧  { ( lastS ‘ 𝑊 ) ,  ( lastS ‘ 𝑤 ) }  ∈  𝐸 ) ) )  →  ( ( 𝑤  prefix  ( 𝑁  +  1 ) )  ++  〈“ ( lastS ‘ 𝑤 ) ”〉 )  =  𝑤 ) | 
						
							| 55 | 37 54 | eqtr2d | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( ( 𝑤  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑤 )  =  ( 𝑁  +  2 ) )  ∧  ( ( 𝑤  prefix  ( 𝑁  +  1 ) )  =  𝑊  ∧  { ( lastS ‘ 𝑊 ) ,  ( lastS ‘ 𝑤 ) }  ∈  𝐸 ) ) )  →  𝑤  =  ( 𝑊  ++  〈“ ( lastS ‘ 𝑤 ) ”〉 ) ) | 
						
							| 56 |  | simprrr | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( ( 𝑤  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑤 )  =  ( 𝑁  +  2 ) )  ∧  ( ( 𝑤  prefix  ( 𝑁  +  1 ) )  =  𝑊  ∧  { ( lastS ‘ 𝑊 ) ,  ( lastS ‘ 𝑤 ) }  ∈  𝐸 ) ) )  →  { ( lastS ‘ 𝑊 ) ,  ( lastS ‘ 𝑤 ) }  ∈  𝐸 ) | 
						
							| 57 | 1 2 | wwlksnextbi | ⊢ ( ( ( 𝑁  ∈  ℕ0  ∧  ( lastS ‘ 𝑤 )  ∈  𝑉 )  ∧  ( 𝑊  ∈  Word  𝑉  ∧  𝑤  =  ( 𝑊  ++  〈“ ( lastS ‘ 𝑤 ) ”〉 )  ∧  { ( lastS ‘ 𝑊 ) ,  ( lastS ‘ 𝑤 ) }  ∈  𝐸 ) )  →  ( 𝑤  ∈  ( ( 𝑁  +  1 )  WWalksN  𝐺 )  ↔  𝑊  ∈  ( 𝑁  WWalksN  𝐺 ) ) ) | 
						
							| 58 | 7 24 33 55 56 57 | syl23anc | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( ( 𝑤  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑤 )  =  ( 𝑁  +  2 ) )  ∧  ( ( 𝑤  prefix  ( 𝑁  +  1 ) )  =  𝑊  ∧  { ( lastS ‘ 𝑊 ) ,  ( lastS ‘ 𝑤 ) }  ∈  𝐸 ) ) )  →  ( 𝑤  ∈  ( ( 𝑁  +  1 )  WWalksN  𝐺 )  ↔  𝑊  ∈  ( 𝑁  WWalksN  𝐺 ) ) ) | 
						
							| 59 | 58 | exbiri | ⊢ ( 𝑁  ∈  ℕ0  →  ( ( ( 𝑤  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑤 )  =  ( 𝑁  +  2 ) )  ∧  ( ( 𝑤  prefix  ( 𝑁  +  1 ) )  =  𝑊  ∧  { ( lastS ‘ 𝑊 ) ,  ( lastS ‘ 𝑤 ) }  ∈  𝐸 ) )  →  ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  →  𝑤  ∈  ( ( 𝑁  +  1 )  WWalksN  𝐺 ) ) ) ) | 
						
							| 60 | 59 | com23 | ⊢ ( 𝑁  ∈  ℕ0  →  ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  →  ( ( ( 𝑤  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑤 )  =  ( 𝑁  +  2 ) )  ∧  ( ( 𝑤  prefix  ( 𝑁  +  1 ) )  =  𝑊  ∧  { ( lastS ‘ 𝑊 ) ,  ( lastS ‘ 𝑤 ) }  ∈  𝐸 ) )  →  𝑤  ∈  ( ( 𝑁  +  1 )  WWalksN  𝐺 ) ) ) ) | 
						
							| 61 | 60 | 3ad2ant2 | ⊢ ( ( 𝐺  ∈  V  ∧  𝑁  ∈  ℕ0  ∧  𝑊  ∈  Word  𝑉 )  →  ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  →  ( ( ( 𝑤  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑤 )  =  ( 𝑁  +  2 ) )  ∧  ( ( 𝑤  prefix  ( 𝑁  +  1 ) )  =  𝑊  ∧  { ( lastS ‘ 𝑊 ) ,  ( lastS ‘ 𝑤 ) }  ∈  𝐸 ) )  →  𝑤  ∈  ( ( 𝑁  +  1 )  WWalksN  𝐺 ) ) ) ) | 
						
							| 62 | 6 61 | mpcom | ⊢ ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  →  ( ( ( 𝑤  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑤 )  =  ( 𝑁  +  2 ) )  ∧  ( ( 𝑤  prefix  ( 𝑁  +  1 ) )  =  𝑊  ∧  { ( lastS ‘ 𝑊 ) ,  ( lastS ‘ 𝑤 ) }  ∈  𝐸 ) )  →  𝑤  ∈  ( ( 𝑁  +  1 )  WWalksN  𝐺 ) ) ) | 
						
							| 63 | 62 | expcomd | ⊢ ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  →  ( ( ( 𝑤  prefix  ( 𝑁  +  1 ) )  =  𝑊  ∧  { ( lastS ‘ 𝑊 ) ,  ( lastS ‘ 𝑤 ) }  ∈  𝐸 )  →  ( ( 𝑤  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑤 )  =  ( 𝑁  +  2 ) )  →  𝑤  ∈  ( ( 𝑁  +  1 )  WWalksN  𝐺 ) ) ) ) | 
						
							| 64 | 63 | imp | ⊢ ( ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ( ( 𝑤  prefix  ( 𝑁  +  1 ) )  =  𝑊  ∧  { ( lastS ‘ 𝑊 ) ,  ( lastS ‘ 𝑤 ) }  ∈  𝐸 ) )  →  ( ( 𝑤  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑤 )  =  ( 𝑁  +  2 ) )  →  𝑤  ∈  ( ( 𝑁  +  1 )  WWalksN  𝐺 ) ) ) | 
						
							| 65 | 1 2 | wwlknp | ⊢ ( 𝑤  ∈  ( ( 𝑁  +  1 )  WWalksN  𝐺 )  →  ( 𝑤  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑤 )  =  ( ( 𝑁  +  1 )  +  1 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( 𝑁  +  1 ) ) { ( 𝑤 ‘ 𝑖 ) ,  ( 𝑤 ‘ ( 𝑖  +  1 ) ) }  ∈  𝐸 ) ) | 
						
							| 66 | 40 42 42 | addassd | ⊢ ( 𝑁  ∈  ℕ0  →  ( ( 𝑁  +  1 )  +  1 )  =  ( 𝑁  +  ( 1  +  1 ) ) ) | 
						
							| 67 |  | 1p1e2 | ⊢ ( 1  +  1 )  =  2 | 
						
							| 68 | 67 | a1i | ⊢ ( 𝑁  ∈  ℕ0  →  ( 1  +  1 )  =  2 ) | 
						
							| 69 | 68 | oveq2d | ⊢ ( 𝑁  ∈  ℕ0  →  ( 𝑁  +  ( 1  +  1 ) )  =  ( 𝑁  +  2 ) ) | 
						
							| 70 | 66 69 | eqtrd | ⊢ ( 𝑁  ∈  ℕ0  →  ( ( 𝑁  +  1 )  +  1 )  =  ( 𝑁  +  2 ) ) | 
						
							| 71 | 70 | eqeq2d | ⊢ ( 𝑁  ∈  ℕ0  →  ( ( ♯ ‘ 𝑤 )  =  ( ( 𝑁  +  1 )  +  1 )  ↔  ( ♯ ‘ 𝑤 )  =  ( 𝑁  +  2 ) ) ) | 
						
							| 72 | 71 | biimpd | ⊢ ( 𝑁  ∈  ℕ0  →  ( ( ♯ ‘ 𝑤 )  =  ( ( 𝑁  +  1 )  +  1 )  →  ( ♯ ‘ 𝑤 )  =  ( 𝑁  +  2 ) ) ) | 
						
							| 73 | 72 | adantr | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝑊  ∈  Word  𝑉 )  →  ( ( ♯ ‘ 𝑤 )  =  ( ( 𝑁  +  1 )  +  1 )  →  ( ♯ ‘ 𝑤 )  =  ( 𝑁  +  2 ) ) ) | 
						
							| 74 | 73 | com12 | ⊢ ( ( ♯ ‘ 𝑤 )  =  ( ( 𝑁  +  1 )  +  1 )  →  ( ( 𝑁  ∈  ℕ0  ∧  𝑊  ∈  Word  𝑉 )  →  ( ♯ ‘ 𝑤 )  =  ( 𝑁  +  2 ) ) ) | 
						
							| 75 | 74 | adantl | ⊢ ( ( 𝑤  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑤 )  =  ( ( 𝑁  +  1 )  +  1 ) )  →  ( ( 𝑁  ∈  ℕ0  ∧  𝑊  ∈  Word  𝑉 )  →  ( ♯ ‘ 𝑤 )  =  ( 𝑁  +  2 ) ) ) | 
						
							| 76 |  | simpl | ⊢ ( ( 𝑤  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑤 )  =  ( ( 𝑁  +  1 )  +  1 ) )  →  𝑤  ∈  Word  𝑉 ) | 
						
							| 77 | 75 76 | jctild | ⊢ ( ( 𝑤  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑤 )  =  ( ( 𝑁  +  1 )  +  1 ) )  →  ( ( 𝑁  ∈  ℕ0  ∧  𝑊  ∈  Word  𝑉 )  →  ( 𝑤  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑤 )  =  ( 𝑁  +  2 ) ) ) ) | 
						
							| 78 | 77 | 3adant3 | ⊢ ( ( 𝑤  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑤 )  =  ( ( 𝑁  +  1 )  +  1 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( 𝑁  +  1 ) ) { ( 𝑤 ‘ 𝑖 ) ,  ( 𝑤 ‘ ( 𝑖  +  1 ) ) }  ∈  𝐸 )  →  ( ( 𝑁  ∈  ℕ0  ∧  𝑊  ∈  Word  𝑉 )  →  ( 𝑤  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑤 )  =  ( 𝑁  +  2 ) ) ) ) | 
						
							| 79 | 65 78 | syl | ⊢ ( 𝑤  ∈  ( ( 𝑁  +  1 )  WWalksN  𝐺 )  →  ( ( 𝑁  ∈  ℕ0  ∧  𝑊  ∈  Word  𝑉 )  →  ( 𝑤  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑤 )  =  ( 𝑁  +  2 ) ) ) ) | 
						
							| 80 | 79 | com12 | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝑊  ∈  Word  𝑉 )  →  ( 𝑤  ∈  ( ( 𝑁  +  1 )  WWalksN  𝐺 )  →  ( 𝑤  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑤 )  =  ( 𝑁  +  2 ) ) ) ) | 
						
							| 81 | 80 | 3adant1 | ⊢ ( ( 𝐺  ∈  V  ∧  𝑁  ∈  ℕ0  ∧  𝑊  ∈  Word  𝑉 )  →  ( 𝑤  ∈  ( ( 𝑁  +  1 )  WWalksN  𝐺 )  →  ( 𝑤  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑤 )  =  ( 𝑁  +  2 ) ) ) ) | 
						
							| 82 | 6 81 | syl | ⊢ ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  →  ( 𝑤  ∈  ( ( 𝑁  +  1 )  WWalksN  𝐺 )  →  ( 𝑤  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑤 )  =  ( 𝑁  +  2 ) ) ) ) | 
						
							| 83 | 82 | adantr | ⊢ ( ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ( ( 𝑤  prefix  ( 𝑁  +  1 ) )  =  𝑊  ∧  { ( lastS ‘ 𝑊 ) ,  ( lastS ‘ 𝑤 ) }  ∈  𝐸 ) )  →  ( 𝑤  ∈  ( ( 𝑁  +  1 )  WWalksN  𝐺 )  →  ( 𝑤  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑤 )  =  ( 𝑁  +  2 ) ) ) ) | 
						
							| 84 | 64 83 | impbid | ⊢ ( ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ( ( 𝑤  prefix  ( 𝑁  +  1 ) )  =  𝑊  ∧  { ( lastS ‘ 𝑊 ) ,  ( lastS ‘ 𝑤 ) }  ∈  𝐸 ) )  →  ( ( 𝑤  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑤 )  =  ( 𝑁  +  2 ) )  ↔  𝑤  ∈  ( ( 𝑁  +  1 )  WWalksN  𝐺 ) ) ) | 
						
							| 85 | 84 | ex | ⊢ ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  →  ( ( ( 𝑤  prefix  ( 𝑁  +  1 ) )  =  𝑊  ∧  { ( lastS ‘ 𝑊 ) ,  ( lastS ‘ 𝑤 ) }  ∈  𝐸 )  →  ( ( 𝑤  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑤 )  =  ( 𝑁  +  2 ) )  ↔  𝑤  ∈  ( ( 𝑁  +  1 )  WWalksN  𝐺 ) ) ) ) | 
						
							| 86 | 85 | pm5.32rd | ⊢ ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  →  ( ( ( 𝑤  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑤 )  =  ( 𝑁  +  2 ) )  ∧  ( ( 𝑤  prefix  ( 𝑁  +  1 ) )  =  𝑊  ∧  { ( lastS ‘ 𝑊 ) ,  ( lastS ‘ 𝑤 ) }  ∈  𝐸 ) )  ↔  ( 𝑤  ∈  ( ( 𝑁  +  1 )  WWalksN  𝐺 )  ∧  ( ( 𝑤  prefix  ( 𝑁  +  1 ) )  =  𝑊  ∧  { ( lastS ‘ 𝑊 ) ,  ( lastS ‘ 𝑤 ) }  ∈  𝐸 ) ) ) ) | 
						
							| 87 | 5 86 | bitrid | ⊢ ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  →  ( ( 𝑤  ∈  Word  𝑉  ∧  ( ( ♯ ‘ 𝑤 )  =  ( 𝑁  +  2 )  ∧  ( 𝑤  prefix  ( 𝑁  +  1 ) )  =  𝑊  ∧  { ( lastS ‘ 𝑊 ) ,  ( lastS ‘ 𝑤 ) }  ∈  𝐸 ) )  ↔  ( 𝑤  ∈  ( ( 𝑁  +  1 )  WWalksN  𝐺 )  ∧  ( ( 𝑤  prefix  ( 𝑁  +  1 ) )  =  𝑊  ∧  { ( lastS ‘ 𝑊 ) ,  ( lastS ‘ 𝑤 ) }  ∈  𝐸 ) ) ) ) | 
						
							| 88 | 87 | rabbidva2 | ⊢ ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  →  { 𝑤  ∈  Word  𝑉  ∣  ( ( ♯ ‘ 𝑤 )  =  ( 𝑁  +  2 )  ∧  ( 𝑤  prefix  ( 𝑁  +  1 ) )  =  𝑊  ∧  { ( lastS ‘ 𝑊 ) ,  ( lastS ‘ 𝑤 ) }  ∈  𝐸 ) }  =  { 𝑤  ∈  ( ( 𝑁  +  1 )  WWalksN  𝐺 )  ∣  ( ( 𝑤  prefix  ( 𝑁  +  1 ) )  =  𝑊  ∧  { ( lastS ‘ 𝑊 ) ,  ( lastS ‘ 𝑤 ) }  ∈  𝐸 ) } ) | 
						
							| 89 | 3 88 | eqtrid | ⊢ ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  →  𝐷  =  { 𝑤  ∈  ( ( 𝑁  +  1 )  WWalksN  𝐺 )  ∣  ( ( 𝑤  prefix  ( 𝑁  +  1 ) )  =  𝑊  ∧  { ( lastS ‘ 𝑊 ) ,  ( lastS ‘ 𝑤 ) }  ∈  𝐸 ) } ) |