| Step | Hyp | Ref | Expression | 
						
							| 1 |  | wwlksnextbij0.v |  |-  V = ( Vtx ` G ) | 
						
							| 2 |  | wwlksnextbij0.e |  |-  E = ( Edg ` G ) | 
						
							| 3 |  | wwlksnextbij0.d |  |-  D = { w e. Word V | ( ( # ` w ) = ( N + 2 ) /\ ( w prefix ( N + 1 ) ) = W /\ { ( lastS ` W ) , ( lastS ` w ) } e. E ) } | 
						
							| 4 |  | 3anass |  |-  ( ( ( # ` w ) = ( N + 2 ) /\ ( w prefix ( N + 1 ) ) = W /\ { ( lastS ` W ) , ( lastS ` w ) } e. E ) <-> ( ( # ` w ) = ( N + 2 ) /\ ( ( w prefix ( N + 1 ) ) = W /\ { ( lastS ` W ) , ( lastS ` w ) } e. E ) ) ) | 
						
							| 5 | 4 | bianass |  |-  ( ( w e. Word V /\ ( ( # ` w ) = ( N + 2 ) /\ ( w prefix ( N + 1 ) ) = W /\ { ( lastS ` W ) , ( lastS ` w ) } e. E ) ) <-> ( ( w e. Word V /\ ( # ` w ) = ( N + 2 ) ) /\ ( ( w prefix ( N + 1 ) ) = W /\ { ( lastS ` W ) , ( lastS ` w ) } e. E ) ) ) | 
						
							| 6 | 1 | wwlknbp |  |-  ( W e. ( N WWalksN G ) -> ( G e. _V /\ N e. NN0 /\ W e. Word V ) ) | 
						
							| 7 |  | simpl |  |-  ( ( N e. NN0 /\ ( ( w e. Word V /\ ( # ` w ) = ( N + 2 ) ) /\ ( ( w prefix ( N + 1 ) ) = W /\ { ( lastS ` W ) , ( lastS ` w ) } e. E ) ) ) -> N e. NN0 ) | 
						
							| 8 |  | simpl |  |-  ( ( w e. Word V /\ ( # ` w ) = ( N + 2 ) ) -> w e. Word V ) | 
						
							| 9 |  | nn0re |  |-  ( N e. NN0 -> N e. RR ) | 
						
							| 10 |  | 2re |  |-  2 e. RR | 
						
							| 11 | 10 | a1i |  |-  ( N e. NN0 -> 2 e. RR ) | 
						
							| 12 |  | nn0ge0 |  |-  ( N e. NN0 -> 0 <_ N ) | 
						
							| 13 |  | 2pos |  |-  0 < 2 | 
						
							| 14 | 13 | a1i |  |-  ( N e. NN0 -> 0 < 2 ) | 
						
							| 15 | 9 11 12 14 | addgegt0d |  |-  ( N e. NN0 -> 0 < ( N + 2 ) ) | 
						
							| 16 | 15 | adantr |  |-  ( ( N e. NN0 /\ ( w e. Word V /\ ( # ` w ) = ( N + 2 ) ) ) -> 0 < ( N + 2 ) ) | 
						
							| 17 |  | breq2 |  |-  ( ( # ` w ) = ( N + 2 ) -> ( 0 < ( # ` w ) <-> 0 < ( N + 2 ) ) ) | 
						
							| 18 | 17 | ad2antll |  |-  ( ( N e. NN0 /\ ( w e. Word V /\ ( # ` w ) = ( N + 2 ) ) ) -> ( 0 < ( # ` w ) <-> 0 < ( N + 2 ) ) ) | 
						
							| 19 | 16 18 | mpbird |  |-  ( ( N e. NN0 /\ ( w e. Word V /\ ( # ` w ) = ( N + 2 ) ) ) -> 0 < ( # ` w ) ) | 
						
							| 20 |  | hashgt0n0 |  |-  ( ( w e. Word V /\ 0 < ( # ` w ) ) -> w =/= (/) ) | 
						
							| 21 | 8 19 20 | syl2an2 |  |-  ( ( N e. NN0 /\ ( w e. Word V /\ ( # ` w ) = ( N + 2 ) ) ) -> w =/= (/) ) | 
						
							| 22 |  | lswcl |  |-  ( ( w e. Word V /\ w =/= (/) ) -> ( lastS ` w ) e. V ) | 
						
							| 23 | 8 21 22 | syl2an2 |  |-  ( ( N e. NN0 /\ ( w e. Word V /\ ( # ` w ) = ( N + 2 ) ) ) -> ( lastS ` w ) e. V ) | 
						
							| 24 | 23 | adantrr |  |-  ( ( N e. NN0 /\ ( ( w e. Word V /\ ( # ` w ) = ( N + 2 ) ) /\ ( ( w prefix ( N + 1 ) ) = W /\ { ( lastS ` W ) , ( lastS ` w ) } e. E ) ) ) -> ( lastS ` w ) e. V ) | 
						
							| 25 |  | pfxcl |  |-  ( w e. Word V -> ( w prefix ( N + 1 ) ) e. Word V ) | 
						
							| 26 |  | eleq1 |  |-  ( W = ( w prefix ( N + 1 ) ) -> ( W e. Word V <-> ( w prefix ( N + 1 ) ) e. Word V ) ) | 
						
							| 27 | 25 26 | imbitrrid |  |-  ( W = ( w prefix ( N + 1 ) ) -> ( w e. Word V -> W e. Word V ) ) | 
						
							| 28 | 27 | eqcoms |  |-  ( ( w prefix ( N + 1 ) ) = W -> ( w e. Word V -> W e. Word V ) ) | 
						
							| 29 | 28 | adantr |  |-  ( ( ( w prefix ( N + 1 ) ) = W /\ { ( lastS ` W ) , ( lastS ` w ) } e. E ) -> ( w e. Word V -> W e. Word V ) ) | 
						
							| 30 | 29 | com12 |  |-  ( w e. Word V -> ( ( ( w prefix ( N + 1 ) ) = W /\ { ( lastS ` W ) , ( lastS ` w ) } e. E ) -> W e. Word V ) ) | 
						
							| 31 | 30 | adantr |  |-  ( ( w e. Word V /\ ( # ` w ) = ( N + 2 ) ) -> ( ( ( w prefix ( N + 1 ) ) = W /\ { ( lastS ` W ) , ( lastS ` w ) } e. E ) -> W e. Word V ) ) | 
						
							| 32 | 31 | imp |  |-  ( ( ( w e. Word V /\ ( # ` w ) = ( N + 2 ) ) /\ ( ( w prefix ( N + 1 ) ) = W /\ { ( lastS ` W ) , ( lastS ` w ) } e. E ) ) -> W e. Word V ) | 
						
							| 33 | 32 | adantl |  |-  ( ( N e. NN0 /\ ( ( w e. Word V /\ ( # ` w ) = ( N + 2 ) ) /\ ( ( w prefix ( N + 1 ) ) = W /\ { ( lastS ` W ) , ( lastS ` w ) } e. E ) ) ) -> W e. Word V ) | 
						
							| 34 |  | oveq1 |  |-  ( W = ( w prefix ( N + 1 ) ) -> ( W ++ <" ( lastS ` w ) "> ) = ( ( w prefix ( N + 1 ) ) ++ <" ( lastS ` w ) "> ) ) | 
						
							| 35 | 34 | eqcoms |  |-  ( ( w prefix ( N + 1 ) ) = W -> ( W ++ <" ( lastS ` w ) "> ) = ( ( w prefix ( N + 1 ) ) ++ <" ( lastS ` w ) "> ) ) | 
						
							| 36 | 35 | adantr |  |-  ( ( ( w prefix ( N + 1 ) ) = W /\ { ( lastS ` W ) , ( lastS ` w ) } e. E ) -> ( W ++ <" ( lastS ` w ) "> ) = ( ( w prefix ( N + 1 ) ) ++ <" ( lastS ` w ) "> ) ) | 
						
							| 37 | 36 | ad2antll |  |-  ( ( N e. NN0 /\ ( ( w e. Word V /\ ( # ` w ) = ( N + 2 ) ) /\ ( ( w prefix ( N + 1 ) ) = W /\ { ( lastS ` W ) , ( lastS ` w ) } e. E ) ) ) -> ( W ++ <" ( lastS ` w ) "> ) = ( ( w prefix ( N + 1 ) ) ++ <" ( lastS ` w ) "> ) ) | 
						
							| 38 |  | oveq1 |  |-  ( ( # ` w ) = ( N + 2 ) -> ( ( # ` w ) - 1 ) = ( ( N + 2 ) - 1 ) ) | 
						
							| 39 | 38 | adantl |  |-  ( ( w e. Word V /\ ( # ` w ) = ( N + 2 ) ) -> ( ( # ` w ) - 1 ) = ( ( N + 2 ) - 1 ) ) | 
						
							| 40 |  | nn0cn |  |-  ( N e. NN0 -> N e. CC ) | 
						
							| 41 |  | 2cnd |  |-  ( N e. NN0 -> 2 e. CC ) | 
						
							| 42 |  | 1cnd |  |-  ( N e. NN0 -> 1 e. CC ) | 
						
							| 43 | 40 41 42 | addsubassd |  |-  ( N e. NN0 -> ( ( N + 2 ) - 1 ) = ( N + ( 2 - 1 ) ) ) | 
						
							| 44 |  | 2m1e1 |  |-  ( 2 - 1 ) = 1 | 
						
							| 45 | 44 | a1i |  |-  ( N e. NN0 -> ( 2 - 1 ) = 1 ) | 
						
							| 46 | 45 | oveq2d |  |-  ( N e. NN0 -> ( N + ( 2 - 1 ) ) = ( N + 1 ) ) | 
						
							| 47 | 43 46 | eqtrd |  |-  ( N e. NN0 -> ( ( N + 2 ) - 1 ) = ( N + 1 ) ) | 
						
							| 48 | 39 47 | sylan9eqr |  |-  ( ( N e. NN0 /\ ( w e. Word V /\ ( # ` w ) = ( N + 2 ) ) ) -> ( ( # ` w ) - 1 ) = ( N + 1 ) ) | 
						
							| 49 | 48 | oveq2d |  |-  ( ( N e. NN0 /\ ( w e. Word V /\ ( # ` w ) = ( N + 2 ) ) ) -> ( w prefix ( ( # ` w ) - 1 ) ) = ( w prefix ( N + 1 ) ) ) | 
						
							| 50 | 49 | oveq1d |  |-  ( ( N e. NN0 /\ ( w e. Word V /\ ( # ` w ) = ( N + 2 ) ) ) -> ( ( w prefix ( ( # ` w ) - 1 ) ) ++ <" ( lastS ` w ) "> ) = ( ( w prefix ( N + 1 ) ) ++ <" ( lastS ` w ) "> ) ) | 
						
							| 51 |  | pfxlswccat |  |-  ( ( w e. Word V /\ w =/= (/) ) -> ( ( w prefix ( ( # ` w ) - 1 ) ) ++ <" ( lastS ` w ) "> ) = w ) | 
						
							| 52 | 8 21 51 | syl2an2 |  |-  ( ( N e. NN0 /\ ( w e. Word V /\ ( # ` w ) = ( N + 2 ) ) ) -> ( ( w prefix ( ( # ` w ) - 1 ) ) ++ <" ( lastS ` w ) "> ) = w ) | 
						
							| 53 | 50 52 | eqtr3d |  |-  ( ( N e. NN0 /\ ( w e. Word V /\ ( # ` w ) = ( N + 2 ) ) ) -> ( ( w prefix ( N + 1 ) ) ++ <" ( lastS ` w ) "> ) = w ) | 
						
							| 54 | 53 | adantrr |  |-  ( ( N e. NN0 /\ ( ( w e. Word V /\ ( # ` w ) = ( N + 2 ) ) /\ ( ( w prefix ( N + 1 ) ) = W /\ { ( lastS ` W ) , ( lastS ` w ) } e. E ) ) ) -> ( ( w prefix ( N + 1 ) ) ++ <" ( lastS ` w ) "> ) = w ) | 
						
							| 55 | 37 54 | eqtr2d |  |-  ( ( N e. NN0 /\ ( ( w e. Word V /\ ( # ` w ) = ( N + 2 ) ) /\ ( ( w prefix ( N + 1 ) ) = W /\ { ( lastS ` W ) , ( lastS ` w ) } e. E ) ) ) -> w = ( W ++ <" ( lastS ` w ) "> ) ) | 
						
							| 56 |  | simprrr |  |-  ( ( N e. NN0 /\ ( ( w e. Word V /\ ( # ` w ) = ( N + 2 ) ) /\ ( ( w prefix ( N + 1 ) ) = W /\ { ( lastS ` W ) , ( lastS ` w ) } e. E ) ) ) -> { ( lastS ` W ) , ( lastS ` w ) } e. E ) | 
						
							| 57 | 1 2 | wwlksnextbi |  |-  ( ( ( N e. NN0 /\ ( lastS ` w ) e. V ) /\ ( W e. Word V /\ w = ( W ++ <" ( lastS ` w ) "> ) /\ { ( lastS ` W ) , ( lastS ` w ) } e. E ) ) -> ( w e. ( ( N + 1 ) WWalksN G ) <-> W e. ( N WWalksN G ) ) ) | 
						
							| 58 | 7 24 33 55 56 57 | syl23anc |  |-  ( ( N e. NN0 /\ ( ( w e. Word V /\ ( # ` w ) = ( N + 2 ) ) /\ ( ( w prefix ( N + 1 ) ) = W /\ { ( lastS ` W ) , ( lastS ` w ) } e. E ) ) ) -> ( w e. ( ( N + 1 ) WWalksN G ) <-> W e. ( N WWalksN G ) ) ) | 
						
							| 59 | 58 | exbiri |  |-  ( N e. NN0 -> ( ( ( w e. Word V /\ ( # ` w ) = ( N + 2 ) ) /\ ( ( w prefix ( N + 1 ) ) = W /\ { ( lastS ` W ) , ( lastS ` w ) } e. E ) ) -> ( W e. ( N WWalksN G ) -> w e. ( ( N + 1 ) WWalksN G ) ) ) ) | 
						
							| 60 | 59 | com23 |  |-  ( N e. NN0 -> ( W e. ( N WWalksN G ) -> ( ( ( w e. Word V /\ ( # ` w ) = ( N + 2 ) ) /\ ( ( w prefix ( N + 1 ) ) = W /\ { ( lastS ` W ) , ( lastS ` w ) } e. E ) ) -> w e. ( ( N + 1 ) WWalksN G ) ) ) ) | 
						
							| 61 | 60 | 3ad2ant2 |  |-  ( ( G e. _V /\ N e. NN0 /\ W e. Word V ) -> ( W e. ( N WWalksN G ) -> ( ( ( w e. Word V /\ ( # ` w ) = ( N + 2 ) ) /\ ( ( w prefix ( N + 1 ) ) = W /\ { ( lastS ` W ) , ( lastS ` w ) } e. E ) ) -> w e. ( ( N + 1 ) WWalksN G ) ) ) ) | 
						
							| 62 | 6 61 | mpcom |  |-  ( W e. ( N WWalksN G ) -> ( ( ( w e. Word V /\ ( # ` w ) = ( N + 2 ) ) /\ ( ( w prefix ( N + 1 ) ) = W /\ { ( lastS ` W ) , ( lastS ` w ) } e. E ) ) -> w e. ( ( N + 1 ) WWalksN G ) ) ) | 
						
							| 63 | 62 | expcomd |  |-  ( W e. ( N WWalksN G ) -> ( ( ( w prefix ( N + 1 ) ) = W /\ { ( lastS ` W ) , ( lastS ` w ) } e. E ) -> ( ( w e. Word V /\ ( # ` w ) = ( N + 2 ) ) -> w e. ( ( N + 1 ) WWalksN G ) ) ) ) | 
						
							| 64 | 63 | imp |  |-  ( ( W e. ( N WWalksN G ) /\ ( ( w prefix ( N + 1 ) ) = W /\ { ( lastS ` W ) , ( lastS ` w ) } e. E ) ) -> ( ( w e. Word V /\ ( # ` w ) = ( N + 2 ) ) -> w e. ( ( N + 1 ) WWalksN G ) ) ) | 
						
							| 65 | 1 2 | wwlknp |  |-  ( w e. ( ( N + 1 ) WWalksN G ) -> ( w e. Word V /\ ( # ` w ) = ( ( N + 1 ) + 1 ) /\ A. i e. ( 0 ..^ ( N + 1 ) ) { ( w ` i ) , ( w ` ( i + 1 ) ) } e. E ) ) | 
						
							| 66 | 40 42 42 | addassd |  |-  ( N e. NN0 -> ( ( N + 1 ) + 1 ) = ( N + ( 1 + 1 ) ) ) | 
						
							| 67 |  | 1p1e2 |  |-  ( 1 + 1 ) = 2 | 
						
							| 68 | 67 | a1i |  |-  ( N e. NN0 -> ( 1 + 1 ) = 2 ) | 
						
							| 69 | 68 | oveq2d |  |-  ( N e. NN0 -> ( N + ( 1 + 1 ) ) = ( N + 2 ) ) | 
						
							| 70 | 66 69 | eqtrd |  |-  ( N e. NN0 -> ( ( N + 1 ) + 1 ) = ( N + 2 ) ) | 
						
							| 71 | 70 | eqeq2d |  |-  ( N e. NN0 -> ( ( # ` w ) = ( ( N + 1 ) + 1 ) <-> ( # ` w ) = ( N + 2 ) ) ) | 
						
							| 72 | 71 | biimpd |  |-  ( N e. NN0 -> ( ( # ` w ) = ( ( N + 1 ) + 1 ) -> ( # ` w ) = ( N + 2 ) ) ) | 
						
							| 73 | 72 | adantr |  |-  ( ( N e. NN0 /\ W e. Word V ) -> ( ( # ` w ) = ( ( N + 1 ) + 1 ) -> ( # ` w ) = ( N + 2 ) ) ) | 
						
							| 74 | 73 | com12 |  |-  ( ( # ` w ) = ( ( N + 1 ) + 1 ) -> ( ( N e. NN0 /\ W e. Word V ) -> ( # ` w ) = ( N + 2 ) ) ) | 
						
							| 75 | 74 | adantl |  |-  ( ( w e. Word V /\ ( # ` w ) = ( ( N + 1 ) + 1 ) ) -> ( ( N e. NN0 /\ W e. Word V ) -> ( # ` w ) = ( N + 2 ) ) ) | 
						
							| 76 |  | simpl |  |-  ( ( w e. Word V /\ ( # ` w ) = ( ( N + 1 ) + 1 ) ) -> w e. Word V ) | 
						
							| 77 | 75 76 | jctild |  |-  ( ( w e. Word V /\ ( # ` w ) = ( ( N + 1 ) + 1 ) ) -> ( ( N e. NN0 /\ W e. Word V ) -> ( w e. Word V /\ ( # ` w ) = ( N + 2 ) ) ) ) | 
						
							| 78 | 77 | 3adant3 |  |-  ( ( w e. Word V /\ ( # ` w ) = ( ( N + 1 ) + 1 ) /\ A. i e. ( 0 ..^ ( N + 1 ) ) { ( w ` i ) , ( w ` ( i + 1 ) ) } e. E ) -> ( ( N e. NN0 /\ W e. Word V ) -> ( w e. Word V /\ ( # ` w ) = ( N + 2 ) ) ) ) | 
						
							| 79 | 65 78 | syl |  |-  ( w e. ( ( N + 1 ) WWalksN G ) -> ( ( N e. NN0 /\ W e. Word V ) -> ( w e. Word V /\ ( # ` w ) = ( N + 2 ) ) ) ) | 
						
							| 80 | 79 | com12 |  |-  ( ( N e. NN0 /\ W e. Word V ) -> ( w e. ( ( N + 1 ) WWalksN G ) -> ( w e. Word V /\ ( # ` w ) = ( N + 2 ) ) ) ) | 
						
							| 81 | 80 | 3adant1 |  |-  ( ( G e. _V /\ N e. NN0 /\ W e. Word V ) -> ( w e. ( ( N + 1 ) WWalksN G ) -> ( w e. Word V /\ ( # ` w ) = ( N + 2 ) ) ) ) | 
						
							| 82 | 6 81 | syl |  |-  ( W e. ( N WWalksN G ) -> ( w e. ( ( N + 1 ) WWalksN G ) -> ( w e. Word V /\ ( # ` w ) = ( N + 2 ) ) ) ) | 
						
							| 83 | 82 | adantr |  |-  ( ( W e. ( N WWalksN G ) /\ ( ( w prefix ( N + 1 ) ) = W /\ { ( lastS ` W ) , ( lastS ` w ) } e. E ) ) -> ( w e. ( ( N + 1 ) WWalksN G ) -> ( w e. Word V /\ ( # ` w ) = ( N + 2 ) ) ) ) | 
						
							| 84 | 64 83 | impbid |  |-  ( ( W e. ( N WWalksN G ) /\ ( ( w prefix ( N + 1 ) ) = W /\ { ( lastS ` W ) , ( lastS ` w ) } e. E ) ) -> ( ( w e. Word V /\ ( # ` w ) = ( N + 2 ) ) <-> w e. ( ( N + 1 ) WWalksN G ) ) ) | 
						
							| 85 | 84 | ex |  |-  ( W e. ( N WWalksN G ) -> ( ( ( w prefix ( N + 1 ) ) = W /\ { ( lastS ` W ) , ( lastS ` w ) } e. E ) -> ( ( w e. Word V /\ ( # ` w ) = ( N + 2 ) ) <-> w e. ( ( N + 1 ) WWalksN G ) ) ) ) | 
						
							| 86 | 85 | pm5.32rd |  |-  ( W e. ( N WWalksN G ) -> ( ( ( w e. Word V /\ ( # ` w ) = ( N + 2 ) ) /\ ( ( w prefix ( N + 1 ) ) = W /\ { ( lastS ` W ) , ( lastS ` w ) } e. E ) ) <-> ( w e. ( ( N + 1 ) WWalksN G ) /\ ( ( w prefix ( N + 1 ) ) = W /\ { ( lastS ` W ) , ( lastS ` w ) } e. E ) ) ) ) | 
						
							| 87 | 5 86 | bitrid |  |-  ( W e. ( N WWalksN G ) -> ( ( w e. Word V /\ ( ( # ` w ) = ( N + 2 ) /\ ( w prefix ( N + 1 ) ) = W /\ { ( lastS ` W ) , ( lastS ` w ) } e. E ) ) <-> ( w e. ( ( N + 1 ) WWalksN G ) /\ ( ( w prefix ( N + 1 ) ) = W /\ { ( lastS ` W ) , ( lastS ` w ) } e. E ) ) ) ) | 
						
							| 88 | 87 | rabbidva2 |  |-  ( W e. ( N WWalksN G ) -> { w e. Word V | ( ( # ` w ) = ( N + 2 ) /\ ( w prefix ( N + 1 ) ) = W /\ { ( lastS ` W ) , ( lastS ` w ) } e. E ) } = { w e. ( ( N + 1 ) WWalksN G ) | ( ( w prefix ( N + 1 ) ) = W /\ { ( lastS ` W ) , ( lastS ` w ) } e. E ) } ) | 
						
							| 89 | 3 88 | eqtrid |  |-  ( W e. ( N WWalksN G ) -> D = { w e. ( ( N + 1 ) WWalksN G ) | ( ( w prefix ( N + 1 ) ) = W /\ { ( lastS ` W ) , ( lastS ` w ) } e. E ) } ) |