| Step | Hyp | Ref | Expression | 
						
							| 1 |  | wwlksnextbij0.v |  |-  V = ( Vtx ` G ) | 
						
							| 2 |  | wwlksnextbij0.e |  |-  E = ( Edg ` G ) | 
						
							| 3 |  | wwlksnextbij0.d |  |-  D = { w e. Word V | ( ( # ` w ) = ( N + 2 ) /\ ( w prefix ( N + 1 ) ) = W /\ { ( lastS ` W ) , ( lastS ` w ) } e. E ) } | 
						
							| 4 |  | wwlksnextbij0.r |  |-  R = { n e. V | { ( lastS ` W ) , n } e. E } | 
						
							| 5 |  | wwlksnextbij0.f |  |-  F = ( t e. D |-> ( lastS ` t ) ) | 
						
							| 6 |  | fveqeq2 |  |-  ( w = t -> ( ( # ` w ) = ( N + 2 ) <-> ( # ` t ) = ( N + 2 ) ) ) | 
						
							| 7 |  | oveq1 |  |-  ( w = t -> ( w prefix ( N + 1 ) ) = ( t prefix ( N + 1 ) ) ) | 
						
							| 8 | 7 | eqeq1d |  |-  ( w = t -> ( ( w prefix ( N + 1 ) ) = W <-> ( t prefix ( N + 1 ) ) = W ) ) | 
						
							| 9 |  | fveq2 |  |-  ( w = t -> ( lastS ` w ) = ( lastS ` t ) ) | 
						
							| 10 | 9 | preq2d |  |-  ( w = t -> { ( lastS ` W ) , ( lastS ` w ) } = { ( lastS ` W ) , ( lastS ` t ) } ) | 
						
							| 11 | 10 | eleq1d |  |-  ( w = t -> ( { ( lastS ` W ) , ( lastS ` w ) } e. E <-> { ( lastS ` W ) , ( lastS ` t ) } e. E ) ) | 
						
							| 12 | 6 8 11 | 3anbi123d |  |-  ( w = t -> ( ( ( # ` w ) = ( N + 2 ) /\ ( w prefix ( N + 1 ) ) = W /\ { ( lastS ` W ) , ( lastS ` w ) } e. E ) <-> ( ( # ` t ) = ( N + 2 ) /\ ( t prefix ( N + 1 ) ) = W /\ { ( lastS ` W ) , ( lastS ` t ) } e. E ) ) ) | 
						
							| 13 | 12 3 | elrab2 |  |-  ( t e. D <-> ( t e. Word V /\ ( ( # ` t ) = ( N + 2 ) /\ ( t prefix ( N + 1 ) ) = W /\ { ( lastS ` W ) , ( lastS ` t ) } e. E ) ) ) | 
						
							| 14 |  | simpll |  |-  ( ( ( t e. Word V /\ N e. NN0 ) /\ ( # ` t ) = ( N + 2 ) ) -> t e. Word V ) | 
						
							| 15 |  | nn0re |  |-  ( N e. NN0 -> N e. RR ) | 
						
							| 16 |  | 2re |  |-  2 e. RR | 
						
							| 17 | 16 | a1i |  |-  ( N e. NN0 -> 2 e. RR ) | 
						
							| 18 |  | nn0ge0 |  |-  ( N e. NN0 -> 0 <_ N ) | 
						
							| 19 |  | 2pos |  |-  0 < 2 | 
						
							| 20 | 19 | a1i |  |-  ( N e. NN0 -> 0 < 2 ) | 
						
							| 21 | 15 17 18 20 | addgegt0d |  |-  ( N e. NN0 -> 0 < ( N + 2 ) ) | 
						
							| 22 | 21 | ad2antlr |  |-  ( ( ( t e. Word V /\ N e. NN0 ) /\ ( # ` t ) = ( N + 2 ) ) -> 0 < ( N + 2 ) ) | 
						
							| 23 |  | breq2 |  |-  ( ( # ` t ) = ( N + 2 ) -> ( 0 < ( # ` t ) <-> 0 < ( N + 2 ) ) ) | 
						
							| 24 | 23 | adantl |  |-  ( ( ( t e. Word V /\ N e. NN0 ) /\ ( # ` t ) = ( N + 2 ) ) -> ( 0 < ( # ` t ) <-> 0 < ( N + 2 ) ) ) | 
						
							| 25 | 22 24 | mpbird |  |-  ( ( ( t e. Word V /\ N e. NN0 ) /\ ( # ` t ) = ( N + 2 ) ) -> 0 < ( # ` t ) ) | 
						
							| 26 |  | hashgt0n0 |  |-  ( ( t e. Word V /\ 0 < ( # ` t ) ) -> t =/= (/) ) | 
						
							| 27 | 14 25 26 | syl2anc |  |-  ( ( ( t e. Word V /\ N e. NN0 ) /\ ( # ` t ) = ( N + 2 ) ) -> t =/= (/) ) | 
						
							| 28 | 14 27 | jca |  |-  ( ( ( t e. Word V /\ N e. NN0 ) /\ ( # ` t ) = ( N + 2 ) ) -> ( t e. Word V /\ t =/= (/) ) ) | 
						
							| 29 | 28 | expcom |  |-  ( ( # ` t ) = ( N + 2 ) -> ( ( t e. Word V /\ N e. NN0 ) -> ( t e. Word V /\ t =/= (/) ) ) ) | 
						
							| 30 | 29 | 3ad2ant1 |  |-  ( ( ( # ` t ) = ( N + 2 ) /\ ( t prefix ( N + 1 ) ) = W /\ { ( lastS ` W ) , ( lastS ` t ) } e. E ) -> ( ( t e. Word V /\ N e. NN0 ) -> ( t e. Word V /\ t =/= (/) ) ) ) | 
						
							| 31 | 30 | expd |  |-  ( ( ( # ` t ) = ( N + 2 ) /\ ( t prefix ( N + 1 ) ) = W /\ { ( lastS ` W ) , ( lastS ` t ) } e. E ) -> ( t e. Word V -> ( N e. NN0 -> ( t e. Word V /\ t =/= (/) ) ) ) ) | 
						
							| 32 | 31 | impcom |  |-  ( ( t e. Word V /\ ( ( # ` t ) = ( N + 2 ) /\ ( t prefix ( N + 1 ) ) = W /\ { ( lastS ` W ) , ( lastS ` t ) } e. E ) ) -> ( N e. NN0 -> ( t e. Word V /\ t =/= (/) ) ) ) | 
						
							| 33 | 32 | impcom |  |-  ( ( N e. NN0 /\ ( t e. Word V /\ ( ( # ` t ) = ( N + 2 ) /\ ( t prefix ( N + 1 ) ) = W /\ { ( lastS ` W ) , ( lastS ` t ) } e. E ) ) ) -> ( t e. Word V /\ t =/= (/) ) ) | 
						
							| 34 |  | lswcl |  |-  ( ( t e. Word V /\ t =/= (/) ) -> ( lastS ` t ) e. V ) | 
						
							| 35 | 33 34 | syl |  |-  ( ( N e. NN0 /\ ( t e. Word V /\ ( ( # ` t ) = ( N + 2 ) /\ ( t prefix ( N + 1 ) ) = W /\ { ( lastS ` W ) , ( lastS ` t ) } e. E ) ) ) -> ( lastS ` t ) e. V ) | 
						
							| 36 |  | simprr3 |  |-  ( ( N e. NN0 /\ ( t e. Word V /\ ( ( # ` t ) = ( N + 2 ) /\ ( t prefix ( N + 1 ) ) = W /\ { ( lastS ` W ) , ( lastS ` t ) } e. E ) ) ) -> { ( lastS ` W ) , ( lastS ` t ) } e. E ) | 
						
							| 37 | 35 36 | jca |  |-  ( ( N e. NN0 /\ ( t e. Word V /\ ( ( # ` t ) = ( N + 2 ) /\ ( t prefix ( N + 1 ) ) = W /\ { ( lastS ` W ) , ( lastS ` t ) } e. E ) ) ) -> ( ( lastS ` t ) e. V /\ { ( lastS ` W ) , ( lastS ` t ) } e. E ) ) | 
						
							| 38 | 13 37 | sylan2b |  |-  ( ( N e. NN0 /\ t e. D ) -> ( ( lastS ` t ) e. V /\ { ( lastS ` W ) , ( lastS ` t ) } e. E ) ) | 
						
							| 39 |  | preq2 |  |-  ( n = ( lastS ` t ) -> { ( lastS ` W ) , n } = { ( lastS ` W ) , ( lastS ` t ) } ) | 
						
							| 40 | 39 | eleq1d |  |-  ( n = ( lastS ` t ) -> ( { ( lastS ` W ) , n } e. E <-> { ( lastS ` W ) , ( lastS ` t ) } e. E ) ) | 
						
							| 41 | 40 4 | elrab2 |  |-  ( ( lastS ` t ) e. R <-> ( ( lastS ` t ) e. V /\ { ( lastS ` W ) , ( lastS ` t ) } e. E ) ) | 
						
							| 42 | 38 41 | sylibr |  |-  ( ( N e. NN0 /\ t e. D ) -> ( lastS ` t ) e. R ) | 
						
							| 43 | 42 5 | fmptd |  |-  ( N e. NN0 -> F : D --> R ) |