| Step | Hyp | Ref | Expression | 
						
							| 1 |  | wwlksnextbij0.v | ⊢ 𝑉  =  ( Vtx ‘ 𝐺 ) | 
						
							| 2 |  | wwlksnextbij0.e | ⊢ 𝐸  =  ( Edg ‘ 𝐺 ) | 
						
							| 3 |  | wwlksnextbij0.d | ⊢ 𝐷  =  { 𝑤  ∈  Word  𝑉  ∣  ( ( ♯ ‘ 𝑤 )  =  ( 𝑁  +  2 )  ∧  ( 𝑤  prefix  ( 𝑁  +  1 ) )  =  𝑊  ∧  { ( lastS ‘ 𝑊 ) ,  ( lastS ‘ 𝑤 ) }  ∈  𝐸 ) } | 
						
							| 4 |  | wwlksnextbij0.r | ⊢ 𝑅  =  { 𝑛  ∈  𝑉  ∣  { ( lastS ‘ 𝑊 ) ,  𝑛 }  ∈  𝐸 } | 
						
							| 5 |  | wwlksnextbij0.f | ⊢ 𝐹  =  ( 𝑡  ∈  𝐷  ↦  ( lastS ‘ 𝑡 ) ) | 
						
							| 6 |  | fveqeq2 | ⊢ ( 𝑤  =  𝑡  →  ( ( ♯ ‘ 𝑤 )  =  ( 𝑁  +  2 )  ↔  ( ♯ ‘ 𝑡 )  =  ( 𝑁  +  2 ) ) ) | 
						
							| 7 |  | oveq1 | ⊢ ( 𝑤  =  𝑡  →  ( 𝑤  prefix  ( 𝑁  +  1 ) )  =  ( 𝑡  prefix  ( 𝑁  +  1 ) ) ) | 
						
							| 8 | 7 | eqeq1d | ⊢ ( 𝑤  =  𝑡  →  ( ( 𝑤  prefix  ( 𝑁  +  1 ) )  =  𝑊  ↔  ( 𝑡  prefix  ( 𝑁  +  1 ) )  =  𝑊 ) ) | 
						
							| 9 |  | fveq2 | ⊢ ( 𝑤  =  𝑡  →  ( lastS ‘ 𝑤 )  =  ( lastS ‘ 𝑡 ) ) | 
						
							| 10 | 9 | preq2d | ⊢ ( 𝑤  =  𝑡  →  { ( lastS ‘ 𝑊 ) ,  ( lastS ‘ 𝑤 ) }  =  { ( lastS ‘ 𝑊 ) ,  ( lastS ‘ 𝑡 ) } ) | 
						
							| 11 | 10 | eleq1d | ⊢ ( 𝑤  =  𝑡  →  ( { ( lastS ‘ 𝑊 ) ,  ( lastS ‘ 𝑤 ) }  ∈  𝐸  ↔  { ( lastS ‘ 𝑊 ) ,  ( lastS ‘ 𝑡 ) }  ∈  𝐸 ) ) | 
						
							| 12 | 6 8 11 | 3anbi123d | ⊢ ( 𝑤  =  𝑡  →  ( ( ( ♯ ‘ 𝑤 )  =  ( 𝑁  +  2 )  ∧  ( 𝑤  prefix  ( 𝑁  +  1 ) )  =  𝑊  ∧  { ( lastS ‘ 𝑊 ) ,  ( lastS ‘ 𝑤 ) }  ∈  𝐸 )  ↔  ( ( ♯ ‘ 𝑡 )  =  ( 𝑁  +  2 )  ∧  ( 𝑡  prefix  ( 𝑁  +  1 ) )  =  𝑊  ∧  { ( lastS ‘ 𝑊 ) ,  ( lastS ‘ 𝑡 ) }  ∈  𝐸 ) ) ) | 
						
							| 13 | 12 3 | elrab2 | ⊢ ( 𝑡  ∈  𝐷  ↔  ( 𝑡  ∈  Word  𝑉  ∧  ( ( ♯ ‘ 𝑡 )  =  ( 𝑁  +  2 )  ∧  ( 𝑡  prefix  ( 𝑁  +  1 ) )  =  𝑊  ∧  { ( lastS ‘ 𝑊 ) ,  ( lastS ‘ 𝑡 ) }  ∈  𝐸 ) ) ) | 
						
							| 14 |  | simpll | ⊢ ( ( ( 𝑡  ∈  Word  𝑉  ∧  𝑁  ∈  ℕ0 )  ∧  ( ♯ ‘ 𝑡 )  =  ( 𝑁  +  2 ) )  →  𝑡  ∈  Word  𝑉 ) | 
						
							| 15 |  | nn0re | ⊢ ( 𝑁  ∈  ℕ0  →  𝑁  ∈  ℝ ) | 
						
							| 16 |  | 2re | ⊢ 2  ∈  ℝ | 
						
							| 17 | 16 | a1i | ⊢ ( 𝑁  ∈  ℕ0  →  2  ∈  ℝ ) | 
						
							| 18 |  | nn0ge0 | ⊢ ( 𝑁  ∈  ℕ0  →  0  ≤  𝑁 ) | 
						
							| 19 |  | 2pos | ⊢ 0  <  2 | 
						
							| 20 | 19 | a1i | ⊢ ( 𝑁  ∈  ℕ0  →  0  <  2 ) | 
						
							| 21 | 15 17 18 20 | addgegt0d | ⊢ ( 𝑁  ∈  ℕ0  →  0  <  ( 𝑁  +  2 ) ) | 
						
							| 22 | 21 | ad2antlr | ⊢ ( ( ( 𝑡  ∈  Word  𝑉  ∧  𝑁  ∈  ℕ0 )  ∧  ( ♯ ‘ 𝑡 )  =  ( 𝑁  +  2 ) )  →  0  <  ( 𝑁  +  2 ) ) | 
						
							| 23 |  | breq2 | ⊢ ( ( ♯ ‘ 𝑡 )  =  ( 𝑁  +  2 )  →  ( 0  <  ( ♯ ‘ 𝑡 )  ↔  0  <  ( 𝑁  +  2 ) ) ) | 
						
							| 24 | 23 | adantl | ⊢ ( ( ( 𝑡  ∈  Word  𝑉  ∧  𝑁  ∈  ℕ0 )  ∧  ( ♯ ‘ 𝑡 )  =  ( 𝑁  +  2 ) )  →  ( 0  <  ( ♯ ‘ 𝑡 )  ↔  0  <  ( 𝑁  +  2 ) ) ) | 
						
							| 25 | 22 24 | mpbird | ⊢ ( ( ( 𝑡  ∈  Word  𝑉  ∧  𝑁  ∈  ℕ0 )  ∧  ( ♯ ‘ 𝑡 )  =  ( 𝑁  +  2 ) )  →  0  <  ( ♯ ‘ 𝑡 ) ) | 
						
							| 26 |  | hashgt0n0 | ⊢ ( ( 𝑡  ∈  Word  𝑉  ∧  0  <  ( ♯ ‘ 𝑡 ) )  →  𝑡  ≠  ∅ ) | 
						
							| 27 | 14 25 26 | syl2anc | ⊢ ( ( ( 𝑡  ∈  Word  𝑉  ∧  𝑁  ∈  ℕ0 )  ∧  ( ♯ ‘ 𝑡 )  =  ( 𝑁  +  2 ) )  →  𝑡  ≠  ∅ ) | 
						
							| 28 | 14 27 | jca | ⊢ ( ( ( 𝑡  ∈  Word  𝑉  ∧  𝑁  ∈  ℕ0 )  ∧  ( ♯ ‘ 𝑡 )  =  ( 𝑁  +  2 ) )  →  ( 𝑡  ∈  Word  𝑉  ∧  𝑡  ≠  ∅ ) ) | 
						
							| 29 | 28 | expcom | ⊢ ( ( ♯ ‘ 𝑡 )  =  ( 𝑁  +  2 )  →  ( ( 𝑡  ∈  Word  𝑉  ∧  𝑁  ∈  ℕ0 )  →  ( 𝑡  ∈  Word  𝑉  ∧  𝑡  ≠  ∅ ) ) ) | 
						
							| 30 | 29 | 3ad2ant1 | ⊢ ( ( ( ♯ ‘ 𝑡 )  =  ( 𝑁  +  2 )  ∧  ( 𝑡  prefix  ( 𝑁  +  1 ) )  =  𝑊  ∧  { ( lastS ‘ 𝑊 ) ,  ( lastS ‘ 𝑡 ) }  ∈  𝐸 )  →  ( ( 𝑡  ∈  Word  𝑉  ∧  𝑁  ∈  ℕ0 )  →  ( 𝑡  ∈  Word  𝑉  ∧  𝑡  ≠  ∅ ) ) ) | 
						
							| 31 | 30 | expd | ⊢ ( ( ( ♯ ‘ 𝑡 )  =  ( 𝑁  +  2 )  ∧  ( 𝑡  prefix  ( 𝑁  +  1 ) )  =  𝑊  ∧  { ( lastS ‘ 𝑊 ) ,  ( lastS ‘ 𝑡 ) }  ∈  𝐸 )  →  ( 𝑡  ∈  Word  𝑉  →  ( 𝑁  ∈  ℕ0  →  ( 𝑡  ∈  Word  𝑉  ∧  𝑡  ≠  ∅ ) ) ) ) | 
						
							| 32 | 31 | impcom | ⊢ ( ( 𝑡  ∈  Word  𝑉  ∧  ( ( ♯ ‘ 𝑡 )  =  ( 𝑁  +  2 )  ∧  ( 𝑡  prefix  ( 𝑁  +  1 ) )  =  𝑊  ∧  { ( lastS ‘ 𝑊 ) ,  ( lastS ‘ 𝑡 ) }  ∈  𝐸 ) )  →  ( 𝑁  ∈  ℕ0  →  ( 𝑡  ∈  Word  𝑉  ∧  𝑡  ≠  ∅ ) ) ) | 
						
							| 33 | 32 | impcom | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( 𝑡  ∈  Word  𝑉  ∧  ( ( ♯ ‘ 𝑡 )  =  ( 𝑁  +  2 )  ∧  ( 𝑡  prefix  ( 𝑁  +  1 ) )  =  𝑊  ∧  { ( lastS ‘ 𝑊 ) ,  ( lastS ‘ 𝑡 ) }  ∈  𝐸 ) ) )  →  ( 𝑡  ∈  Word  𝑉  ∧  𝑡  ≠  ∅ ) ) | 
						
							| 34 |  | lswcl | ⊢ ( ( 𝑡  ∈  Word  𝑉  ∧  𝑡  ≠  ∅ )  →  ( lastS ‘ 𝑡 )  ∈  𝑉 ) | 
						
							| 35 | 33 34 | syl | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( 𝑡  ∈  Word  𝑉  ∧  ( ( ♯ ‘ 𝑡 )  =  ( 𝑁  +  2 )  ∧  ( 𝑡  prefix  ( 𝑁  +  1 ) )  =  𝑊  ∧  { ( lastS ‘ 𝑊 ) ,  ( lastS ‘ 𝑡 ) }  ∈  𝐸 ) ) )  →  ( lastS ‘ 𝑡 )  ∈  𝑉 ) | 
						
							| 36 |  | simprr3 | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( 𝑡  ∈  Word  𝑉  ∧  ( ( ♯ ‘ 𝑡 )  =  ( 𝑁  +  2 )  ∧  ( 𝑡  prefix  ( 𝑁  +  1 ) )  =  𝑊  ∧  { ( lastS ‘ 𝑊 ) ,  ( lastS ‘ 𝑡 ) }  ∈  𝐸 ) ) )  →  { ( lastS ‘ 𝑊 ) ,  ( lastS ‘ 𝑡 ) }  ∈  𝐸 ) | 
						
							| 37 | 35 36 | jca | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( 𝑡  ∈  Word  𝑉  ∧  ( ( ♯ ‘ 𝑡 )  =  ( 𝑁  +  2 )  ∧  ( 𝑡  prefix  ( 𝑁  +  1 ) )  =  𝑊  ∧  { ( lastS ‘ 𝑊 ) ,  ( lastS ‘ 𝑡 ) }  ∈  𝐸 ) ) )  →  ( ( lastS ‘ 𝑡 )  ∈  𝑉  ∧  { ( lastS ‘ 𝑊 ) ,  ( lastS ‘ 𝑡 ) }  ∈  𝐸 ) ) | 
						
							| 38 | 13 37 | sylan2b | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝑡  ∈  𝐷 )  →  ( ( lastS ‘ 𝑡 )  ∈  𝑉  ∧  { ( lastS ‘ 𝑊 ) ,  ( lastS ‘ 𝑡 ) }  ∈  𝐸 ) ) | 
						
							| 39 |  | preq2 | ⊢ ( 𝑛  =  ( lastS ‘ 𝑡 )  →  { ( lastS ‘ 𝑊 ) ,  𝑛 }  =  { ( lastS ‘ 𝑊 ) ,  ( lastS ‘ 𝑡 ) } ) | 
						
							| 40 | 39 | eleq1d | ⊢ ( 𝑛  =  ( lastS ‘ 𝑡 )  →  ( { ( lastS ‘ 𝑊 ) ,  𝑛 }  ∈  𝐸  ↔  { ( lastS ‘ 𝑊 ) ,  ( lastS ‘ 𝑡 ) }  ∈  𝐸 ) ) | 
						
							| 41 | 40 4 | elrab2 | ⊢ ( ( lastS ‘ 𝑡 )  ∈  𝑅  ↔  ( ( lastS ‘ 𝑡 )  ∈  𝑉  ∧  { ( lastS ‘ 𝑊 ) ,  ( lastS ‘ 𝑡 ) }  ∈  𝐸 ) ) | 
						
							| 42 | 38 41 | sylibr | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝑡  ∈  𝐷 )  →  ( lastS ‘ 𝑡 )  ∈  𝑅 ) | 
						
							| 43 | 42 5 | fmptd | ⊢ ( 𝑁  ∈  ℕ0  →  𝐹 : 𝐷 ⟶ 𝑅 ) |