| Step | Hyp | Ref | Expression | 
						
							| 1 |  | wwlksnextbij0.v | ⊢ 𝑉  =  ( Vtx ‘ 𝐺 ) | 
						
							| 2 |  | wwlksnextbij0.e | ⊢ 𝐸  =  ( Edg ‘ 𝐺 ) | 
						
							| 3 |  | wwlksnextbij0.d | ⊢ 𝐷  =  { 𝑤  ∈  Word  𝑉  ∣  ( ( ♯ ‘ 𝑤 )  =  ( 𝑁  +  2 )  ∧  ( 𝑤  prefix  ( 𝑁  +  1 ) )  =  𝑊  ∧  { ( lastS ‘ 𝑊 ) ,  ( lastS ‘ 𝑤 ) }  ∈  𝐸 ) } | 
						
							| 4 |  | wwlksnextbij0.r | ⊢ 𝑅  =  { 𝑛  ∈  𝑉  ∣  { ( lastS ‘ 𝑊 ) ,  𝑛 }  ∈  𝐸 } | 
						
							| 5 |  | wwlksnextbij0.f | ⊢ 𝐹  =  ( 𝑡  ∈  𝐷  ↦  ( lastS ‘ 𝑡 ) ) | 
						
							| 6 | 1 2 3 4 5 | wwlksnextfun | ⊢ ( 𝑁  ∈  ℕ0  →  𝐹 : 𝐷 ⟶ 𝑅 ) | 
						
							| 7 |  | fveq2 | ⊢ ( 𝑡  =  𝑑  →  ( lastS ‘ 𝑡 )  =  ( lastS ‘ 𝑑 ) ) | 
						
							| 8 |  | fvex | ⊢ ( lastS ‘ 𝑑 )  ∈  V | 
						
							| 9 | 7 5 8 | fvmpt | ⊢ ( 𝑑  ∈  𝐷  →  ( 𝐹 ‘ 𝑑 )  =  ( lastS ‘ 𝑑 ) ) | 
						
							| 10 |  | fveq2 | ⊢ ( 𝑡  =  𝑥  →  ( lastS ‘ 𝑡 )  =  ( lastS ‘ 𝑥 ) ) | 
						
							| 11 |  | fvex | ⊢ ( lastS ‘ 𝑥 )  ∈  V | 
						
							| 12 | 10 5 11 | fvmpt | ⊢ ( 𝑥  ∈  𝐷  →  ( 𝐹 ‘ 𝑥 )  =  ( lastS ‘ 𝑥 ) ) | 
						
							| 13 | 9 12 | eqeqan12d | ⊢ ( ( 𝑑  ∈  𝐷  ∧  𝑥  ∈  𝐷 )  →  ( ( 𝐹 ‘ 𝑑 )  =  ( 𝐹 ‘ 𝑥 )  ↔  ( lastS ‘ 𝑑 )  =  ( lastS ‘ 𝑥 ) ) ) | 
						
							| 14 | 13 | adantl | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( 𝑑  ∈  𝐷  ∧  𝑥  ∈  𝐷 ) )  →  ( ( 𝐹 ‘ 𝑑 )  =  ( 𝐹 ‘ 𝑥 )  ↔  ( lastS ‘ 𝑑 )  =  ( lastS ‘ 𝑥 ) ) ) | 
						
							| 15 |  | fveqeq2 | ⊢ ( 𝑤  =  𝑑  →  ( ( ♯ ‘ 𝑤 )  =  ( 𝑁  +  2 )  ↔  ( ♯ ‘ 𝑑 )  =  ( 𝑁  +  2 ) ) ) | 
						
							| 16 |  | oveq1 | ⊢ ( 𝑤  =  𝑑  →  ( 𝑤  prefix  ( 𝑁  +  1 ) )  =  ( 𝑑  prefix  ( 𝑁  +  1 ) ) ) | 
						
							| 17 | 16 | eqeq1d | ⊢ ( 𝑤  =  𝑑  →  ( ( 𝑤  prefix  ( 𝑁  +  1 ) )  =  𝑊  ↔  ( 𝑑  prefix  ( 𝑁  +  1 ) )  =  𝑊 ) ) | 
						
							| 18 |  | fveq2 | ⊢ ( 𝑤  =  𝑑  →  ( lastS ‘ 𝑤 )  =  ( lastS ‘ 𝑑 ) ) | 
						
							| 19 | 18 | preq2d | ⊢ ( 𝑤  =  𝑑  →  { ( lastS ‘ 𝑊 ) ,  ( lastS ‘ 𝑤 ) }  =  { ( lastS ‘ 𝑊 ) ,  ( lastS ‘ 𝑑 ) } ) | 
						
							| 20 | 19 | eleq1d | ⊢ ( 𝑤  =  𝑑  →  ( { ( lastS ‘ 𝑊 ) ,  ( lastS ‘ 𝑤 ) }  ∈  𝐸  ↔  { ( lastS ‘ 𝑊 ) ,  ( lastS ‘ 𝑑 ) }  ∈  𝐸 ) ) | 
						
							| 21 | 15 17 20 | 3anbi123d | ⊢ ( 𝑤  =  𝑑  →  ( ( ( ♯ ‘ 𝑤 )  =  ( 𝑁  +  2 )  ∧  ( 𝑤  prefix  ( 𝑁  +  1 ) )  =  𝑊  ∧  { ( lastS ‘ 𝑊 ) ,  ( lastS ‘ 𝑤 ) }  ∈  𝐸 )  ↔  ( ( ♯ ‘ 𝑑 )  =  ( 𝑁  +  2 )  ∧  ( 𝑑  prefix  ( 𝑁  +  1 ) )  =  𝑊  ∧  { ( lastS ‘ 𝑊 ) ,  ( lastS ‘ 𝑑 ) }  ∈  𝐸 ) ) ) | 
						
							| 22 | 21 3 | elrab2 | ⊢ ( 𝑑  ∈  𝐷  ↔  ( 𝑑  ∈  Word  𝑉  ∧  ( ( ♯ ‘ 𝑑 )  =  ( 𝑁  +  2 )  ∧  ( 𝑑  prefix  ( 𝑁  +  1 ) )  =  𝑊  ∧  { ( lastS ‘ 𝑊 ) ,  ( lastS ‘ 𝑑 ) }  ∈  𝐸 ) ) ) | 
						
							| 23 |  | fveqeq2 | ⊢ ( 𝑤  =  𝑥  →  ( ( ♯ ‘ 𝑤 )  =  ( 𝑁  +  2 )  ↔  ( ♯ ‘ 𝑥 )  =  ( 𝑁  +  2 ) ) ) | 
						
							| 24 |  | oveq1 | ⊢ ( 𝑤  =  𝑥  →  ( 𝑤  prefix  ( 𝑁  +  1 ) )  =  ( 𝑥  prefix  ( 𝑁  +  1 ) ) ) | 
						
							| 25 | 24 | eqeq1d | ⊢ ( 𝑤  =  𝑥  →  ( ( 𝑤  prefix  ( 𝑁  +  1 ) )  =  𝑊  ↔  ( 𝑥  prefix  ( 𝑁  +  1 ) )  =  𝑊 ) ) | 
						
							| 26 |  | fveq2 | ⊢ ( 𝑤  =  𝑥  →  ( lastS ‘ 𝑤 )  =  ( lastS ‘ 𝑥 ) ) | 
						
							| 27 | 26 | preq2d | ⊢ ( 𝑤  =  𝑥  →  { ( lastS ‘ 𝑊 ) ,  ( lastS ‘ 𝑤 ) }  =  { ( lastS ‘ 𝑊 ) ,  ( lastS ‘ 𝑥 ) } ) | 
						
							| 28 | 27 | eleq1d | ⊢ ( 𝑤  =  𝑥  →  ( { ( lastS ‘ 𝑊 ) ,  ( lastS ‘ 𝑤 ) }  ∈  𝐸  ↔  { ( lastS ‘ 𝑊 ) ,  ( lastS ‘ 𝑥 ) }  ∈  𝐸 ) ) | 
						
							| 29 | 23 25 28 | 3anbi123d | ⊢ ( 𝑤  =  𝑥  →  ( ( ( ♯ ‘ 𝑤 )  =  ( 𝑁  +  2 )  ∧  ( 𝑤  prefix  ( 𝑁  +  1 ) )  =  𝑊  ∧  { ( lastS ‘ 𝑊 ) ,  ( lastS ‘ 𝑤 ) }  ∈  𝐸 )  ↔  ( ( ♯ ‘ 𝑥 )  =  ( 𝑁  +  2 )  ∧  ( 𝑥  prefix  ( 𝑁  +  1 ) )  =  𝑊  ∧  { ( lastS ‘ 𝑊 ) ,  ( lastS ‘ 𝑥 ) }  ∈  𝐸 ) ) ) | 
						
							| 30 | 29 3 | elrab2 | ⊢ ( 𝑥  ∈  𝐷  ↔  ( 𝑥  ∈  Word  𝑉  ∧  ( ( ♯ ‘ 𝑥 )  =  ( 𝑁  +  2 )  ∧  ( 𝑥  prefix  ( 𝑁  +  1 ) )  =  𝑊  ∧  { ( lastS ‘ 𝑊 ) ,  ( lastS ‘ 𝑥 ) }  ∈  𝐸 ) ) ) | 
						
							| 31 |  | eqtr3 | ⊢ ( ( ( ♯ ‘ 𝑑 )  =  ( 𝑁  +  2 )  ∧  ( ♯ ‘ 𝑥 )  =  ( 𝑁  +  2 ) )  →  ( ♯ ‘ 𝑑 )  =  ( ♯ ‘ 𝑥 ) ) | 
						
							| 32 | 31 | expcom | ⊢ ( ( ♯ ‘ 𝑥 )  =  ( 𝑁  +  2 )  →  ( ( ♯ ‘ 𝑑 )  =  ( 𝑁  +  2 )  →  ( ♯ ‘ 𝑑 )  =  ( ♯ ‘ 𝑥 ) ) ) | 
						
							| 33 | 32 | 3ad2ant1 | ⊢ ( ( ( ♯ ‘ 𝑥 )  =  ( 𝑁  +  2 )  ∧  ( 𝑥  prefix  ( 𝑁  +  1 ) )  =  𝑊  ∧  { ( lastS ‘ 𝑊 ) ,  ( lastS ‘ 𝑥 ) }  ∈  𝐸 )  →  ( ( ♯ ‘ 𝑑 )  =  ( 𝑁  +  2 )  →  ( ♯ ‘ 𝑑 )  =  ( ♯ ‘ 𝑥 ) ) ) | 
						
							| 34 | 33 | adantl | ⊢ ( ( 𝑥  ∈  Word  𝑉  ∧  ( ( ♯ ‘ 𝑥 )  =  ( 𝑁  +  2 )  ∧  ( 𝑥  prefix  ( 𝑁  +  1 ) )  =  𝑊  ∧  { ( lastS ‘ 𝑊 ) ,  ( lastS ‘ 𝑥 ) }  ∈  𝐸 ) )  →  ( ( ♯ ‘ 𝑑 )  =  ( 𝑁  +  2 )  →  ( ♯ ‘ 𝑑 )  =  ( ♯ ‘ 𝑥 ) ) ) | 
						
							| 35 | 34 | com12 | ⊢ ( ( ♯ ‘ 𝑑 )  =  ( 𝑁  +  2 )  →  ( ( 𝑥  ∈  Word  𝑉  ∧  ( ( ♯ ‘ 𝑥 )  =  ( 𝑁  +  2 )  ∧  ( 𝑥  prefix  ( 𝑁  +  1 ) )  =  𝑊  ∧  { ( lastS ‘ 𝑊 ) ,  ( lastS ‘ 𝑥 ) }  ∈  𝐸 ) )  →  ( ♯ ‘ 𝑑 )  =  ( ♯ ‘ 𝑥 ) ) ) | 
						
							| 36 | 35 | 3ad2ant1 | ⊢ ( ( ( ♯ ‘ 𝑑 )  =  ( 𝑁  +  2 )  ∧  ( 𝑑  prefix  ( 𝑁  +  1 ) )  =  𝑊  ∧  { ( lastS ‘ 𝑊 ) ,  ( lastS ‘ 𝑑 ) }  ∈  𝐸 )  →  ( ( 𝑥  ∈  Word  𝑉  ∧  ( ( ♯ ‘ 𝑥 )  =  ( 𝑁  +  2 )  ∧  ( 𝑥  prefix  ( 𝑁  +  1 ) )  =  𝑊  ∧  { ( lastS ‘ 𝑊 ) ,  ( lastS ‘ 𝑥 ) }  ∈  𝐸 ) )  →  ( ♯ ‘ 𝑑 )  =  ( ♯ ‘ 𝑥 ) ) ) | 
						
							| 37 | 36 | adantl | ⊢ ( ( 𝑑  ∈  Word  𝑉  ∧  ( ( ♯ ‘ 𝑑 )  =  ( 𝑁  +  2 )  ∧  ( 𝑑  prefix  ( 𝑁  +  1 ) )  =  𝑊  ∧  { ( lastS ‘ 𝑊 ) ,  ( lastS ‘ 𝑑 ) }  ∈  𝐸 ) )  →  ( ( 𝑥  ∈  Word  𝑉  ∧  ( ( ♯ ‘ 𝑥 )  =  ( 𝑁  +  2 )  ∧  ( 𝑥  prefix  ( 𝑁  +  1 ) )  =  𝑊  ∧  { ( lastS ‘ 𝑊 ) ,  ( lastS ‘ 𝑥 ) }  ∈  𝐸 ) )  →  ( ♯ ‘ 𝑑 )  =  ( ♯ ‘ 𝑥 ) ) ) | 
						
							| 38 | 37 | imp | ⊢ ( ( ( 𝑑  ∈  Word  𝑉  ∧  ( ( ♯ ‘ 𝑑 )  =  ( 𝑁  +  2 )  ∧  ( 𝑑  prefix  ( 𝑁  +  1 ) )  =  𝑊  ∧  { ( lastS ‘ 𝑊 ) ,  ( lastS ‘ 𝑑 ) }  ∈  𝐸 ) )  ∧  ( 𝑥  ∈  Word  𝑉  ∧  ( ( ♯ ‘ 𝑥 )  =  ( 𝑁  +  2 )  ∧  ( 𝑥  prefix  ( 𝑁  +  1 ) )  =  𝑊  ∧  { ( lastS ‘ 𝑊 ) ,  ( lastS ‘ 𝑥 ) }  ∈  𝐸 ) ) )  →  ( ♯ ‘ 𝑑 )  =  ( ♯ ‘ 𝑥 ) ) | 
						
							| 39 | 38 | adantr | ⊢ ( ( ( ( 𝑑  ∈  Word  𝑉  ∧  ( ( ♯ ‘ 𝑑 )  =  ( 𝑁  +  2 )  ∧  ( 𝑑  prefix  ( 𝑁  +  1 ) )  =  𝑊  ∧  { ( lastS ‘ 𝑊 ) ,  ( lastS ‘ 𝑑 ) }  ∈  𝐸 ) )  ∧  ( 𝑥  ∈  Word  𝑉  ∧  ( ( ♯ ‘ 𝑥 )  =  ( 𝑁  +  2 )  ∧  ( 𝑥  prefix  ( 𝑁  +  1 ) )  =  𝑊  ∧  { ( lastS ‘ 𝑊 ) ,  ( lastS ‘ 𝑥 ) }  ∈  𝐸 ) ) )  ∧  𝑁  ∈  ℕ0 )  →  ( ♯ ‘ 𝑑 )  =  ( ♯ ‘ 𝑥 ) ) | 
						
							| 40 | 39 | adantr | ⊢ ( ( ( ( ( 𝑑  ∈  Word  𝑉  ∧  ( ( ♯ ‘ 𝑑 )  =  ( 𝑁  +  2 )  ∧  ( 𝑑  prefix  ( 𝑁  +  1 ) )  =  𝑊  ∧  { ( lastS ‘ 𝑊 ) ,  ( lastS ‘ 𝑑 ) }  ∈  𝐸 ) )  ∧  ( 𝑥  ∈  Word  𝑉  ∧  ( ( ♯ ‘ 𝑥 )  =  ( 𝑁  +  2 )  ∧  ( 𝑥  prefix  ( 𝑁  +  1 ) )  =  𝑊  ∧  { ( lastS ‘ 𝑊 ) ,  ( lastS ‘ 𝑥 ) }  ∈  𝐸 ) ) )  ∧  𝑁  ∈  ℕ0 )  ∧  ( lastS ‘ 𝑑 )  =  ( lastS ‘ 𝑥 ) )  →  ( ♯ ‘ 𝑑 )  =  ( ♯ ‘ 𝑥 ) ) | 
						
							| 41 |  | simpr | ⊢ ( ( ( ( ( 𝑑  ∈  Word  𝑉  ∧  ( ( ♯ ‘ 𝑑 )  =  ( 𝑁  +  2 )  ∧  ( 𝑑  prefix  ( 𝑁  +  1 ) )  =  𝑊  ∧  { ( lastS ‘ 𝑊 ) ,  ( lastS ‘ 𝑑 ) }  ∈  𝐸 ) )  ∧  ( 𝑥  ∈  Word  𝑉  ∧  ( ( ♯ ‘ 𝑥 )  =  ( 𝑁  +  2 )  ∧  ( 𝑥  prefix  ( 𝑁  +  1 ) )  =  𝑊  ∧  { ( lastS ‘ 𝑊 ) ,  ( lastS ‘ 𝑥 ) }  ∈  𝐸 ) ) )  ∧  𝑁  ∈  ℕ0 )  ∧  ( lastS ‘ 𝑑 )  =  ( lastS ‘ 𝑥 ) )  →  ( lastS ‘ 𝑑 )  =  ( lastS ‘ 𝑥 ) ) | 
						
							| 42 |  | eqtr3 | ⊢ ( ( ( 𝑑  prefix  ( 𝑁  +  1 ) )  =  𝑊  ∧  ( 𝑥  prefix  ( 𝑁  +  1 ) )  =  𝑊 )  →  ( 𝑑  prefix  ( 𝑁  +  1 ) )  =  ( 𝑥  prefix  ( 𝑁  +  1 ) ) ) | 
						
							| 43 |  | 1e2m1 | ⊢ 1  =  ( 2  −  1 ) | 
						
							| 44 | 43 | a1i | ⊢ ( 𝑁  ∈  ℕ0  →  1  =  ( 2  −  1 ) ) | 
						
							| 45 | 44 | oveq2d | ⊢ ( 𝑁  ∈  ℕ0  →  ( 𝑁  +  1 )  =  ( 𝑁  +  ( 2  −  1 ) ) ) | 
						
							| 46 |  | nn0cn | ⊢ ( 𝑁  ∈  ℕ0  →  𝑁  ∈  ℂ ) | 
						
							| 47 |  | 2cnd | ⊢ ( 𝑁  ∈  ℕ0  →  2  ∈  ℂ ) | 
						
							| 48 |  | 1cnd | ⊢ ( 𝑁  ∈  ℕ0  →  1  ∈  ℂ ) | 
						
							| 49 | 46 47 48 | addsubassd | ⊢ ( 𝑁  ∈  ℕ0  →  ( ( 𝑁  +  2 )  −  1 )  =  ( 𝑁  +  ( 2  −  1 ) ) ) | 
						
							| 50 | 45 49 | eqtr4d | ⊢ ( 𝑁  ∈  ℕ0  →  ( 𝑁  +  1 )  =  ( ( 𝑁  +  2 )  −  1 ) ) | 
						
							| 51 | 50 | adantr | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( ♯ ‘ 𝑑 )  =  ( 𝑁  +  2 ) )  →  ( 𝑁  +  1 )  =  ( ( 𝑁  +  2 )  −  1 ) ) | 
						
							| 52 |  | oveq1 | ⊢ ( ( ♯ ‘ 𝑑 )  =  ( 𝑁  +  2 )  →  ( ( ♯ ‘ 𝑑 )  −  1 )  =  ( ( 𝑁  +  2 )  −  1 ) ) | 
						
							| 53 | 52 | eqeq2d | ⊢ ( ( ♯ ‘ 𝑑 )  =  ( 𝑁  +  2 )  →  ( ( 𝑁  +  1 )  =  ( ( ♯ ‘ 𝑑 )  −  1 )  ↔  ( 𝑁  +  1 )  =  ( ( 𝑁  +  2 )  −  1 ) ) ) | 
						
							| 54 | 53 | adantl | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( ♯ ‘ 𝑑 )  =  ( 𝑁  +  2 ) )  →  ( ( 𝑁  +  1 )  =  ( ( ♯ ‘ 𝑑 )  −  1 )  ↔  ( 𝑁  +  1 )  =  ( ( 𝑁  +  2 )  −  1 ) ) ) | 
						
							| 55 | 51 54 | mpbird | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( ♯ ‘ 𝑑 )  =  ( 𝑁  +  2 ) )  →  ( 𝑁  +  1 )  =  ( ( ♯ ‘ 𝑑 )  −  1 ) ) | 
						
							| 56 |  | oveq2 | ⊢ ( ( 𝑁  +  1 )  =  ( ( ♯ ‘ 𝑑 )  −  1 )  →  ( 𝑑  prefix  ( 𝑁  +  1 ) )  =  ( 𝑑  prefix  ( ( ♯ ‘ 𝑑 )  −  1 ) ) ) | 
						
							| 57 |  | oveq2 | ⊢ ( ( 𝑁  +  1 )  =  ( ( ♯ ‘ 𝑑 )  −  1 )  →  ( 𝑥  prefix  ( 𝑁  +  1 ) )  =  ( 𝑥  prefix  ( ( ♯ ‘ 𝑑 )  −  1 ) ) ) | 
						
							| 58 | 56 57 | eqeq12d | ⊢ ( ( 𝑁  +  1 )  =  ( ( ♯ ‘ 𝑑 )  −  1 )  →  ( ( 𝑑  prefix  ( 𝑁  +  1 ) )  =  ( 𝑥  prefix  ( 𝑁  +  1 ) )  ↔  ( 𝑑  prefix  ( ( ♯ ‘ 𝑑 )  −  1 ) )  =  ( 𝑥  prefix  ( ( ♯ ‘ 𝑑 )  −  1 ) ) ) ) | 
						
							| 59 | 55 58 | syl | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( ♯ ‘ 𝑑 )  =  ( 𝑁  +  2 ) )  →  ( ( 𝑑  prefix  ( 𝑁  +  1 ) )  =  ( 𝑥  prefix  ( 𝑁  +  1 ) )  ↔  ( 𝑑  prefix  ( ( ♯ ‘ 𝑑 )  −  1 ) )  =  ( 𝑥  prefix  ( ( ♯ ‘ 𝑑 )  −  1 ) ) ) ) | 
						
							| 60 | 59 | biimpd | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( ♯ ‘ 𝑑 )  =  ( 𝑁  +  2 ) )  →  ( ( 𝑑  prefix  ( 𝑁  +  1 ) )  =  ( 𝑥  prefix  ( 𝑁  +  1 ) )  →  ( 𝑑  prefix  ( ( ♯ ‘ 𝑑 )  −  1 ) )  =  ( 𝑥  prefix  ( ( ♯ ‘ 𝑑 )  −  1 ) ) ) ) | 
						
							| 61 | 60 | ex | ⊢ ( 𝑁  ∈  ℕ0  →  ( ( ♯ ‘ 𝑑 )  =  ( 𝑁  +  2 )  →  ( ( 𝑑  prefix  ( 𝑁  +  1 ) )  =  ( 𝑥  prefix  ( 𝑁  +  1 ) )  →  ( 𝑑  prefix  ( ( ♯ ‘ 𝑑 )  −  1 ) )  =  ( 𝑥  prefix  ( ( ♯ ‘ 𝑑 )  −  1 ) ) ) ) ) | 
						
							| 62 | 61 | com13 | ⊢ ( ( 𝑑  prefix  ( 𝑁  +  1 ) )  =  ( 𝑥  prefix  ( 𝑁  +  1 ) )  →  ( ( ♯ ‘ 𝑑 )  =  ( 𝑁  +  2 )  →  ( 𝑁  ∈  ℕ0  →  ( 𝑑  prefix  ( ( ♯ ‘ 𝑑 )  −  1 ) )  =  ( 𝑥  prefix  ( ( ♯ ‘ 𝑑 )  −  1 ) ) ) ) ) | 
						
							| 63 | 42 62 | syl | ⊢ ( ( ( 𝑑  prefix  ( 𝑁  +  1 ) )  =  𝑊  ∧  ( 𝑥  prefix  ( 𝑁  +  1 ) )  =  𝑊 )  →  ( ( ♯ ‘ 𝑑 )  =  ( 𝑁  +  2 )  →  ( 𝑁  ∈  ℕ0  →  ( 𝑑  prefix  ( ( ♯ ‘ 𝑑 )  −  1 ) )  =  ( 𝑥  prefix  ( ( ♯ ‘ 𝑑 )  −  1 ) ) ) ) ) | 
						
							| 64 | 63 | ex | ⊢ ( ( 𝑑  prefix  ( 𝑁  +  1 ) )  =  𝑊  →  ( ( 𝑥  prefix  ( 𝑁  +  1 ) )  =  𝑊  →  ( ( ♯ ‘ 𝑑 )  =  ( 𝑁  +  2 )  →  ( 𝑁  ∈  ℕ0  →  ( 𝑑  prefix  ( ( ♯ ‘ 𝑑 )  −  1 ) )  =  ( 𝑥  prefix  ( ( ♯ ‘ 𝑑 )  −  1 ) ) ) ) ) ) | 
						
							| 65 | 64 | com23 | ⊢ ( ( 𝑑  prefix  ( 𝑁  +  1 ) )  =  𝑊  →  ( ( ♯ ‘ 𝑑 )  =  ( 𝑁  +  2 )  →  ( ( 𝑥  prefix  ( 𝑁  +  1 ) )  =  𝑊  →  ( 𝑁  ∈  ℕ0  →  ( 𝑑  prefix  ( ( ♯ ‘ 𝑑 )  −  1 ) )  =  ( 𝑥  prefix  ( ( ♯ ‘ 𝑑 )  −  1 ) ) ) ) ) ) | 
						
							| 66 | 65 | impcom | ⊢ ( ( ( ♯ ‘ 𝑑 )  =  ( 𝑁  +  2 )  ∧  ( 𝑑  prefix  ( 𝑁  +  1 ) )  =  𝑊 )  →  ( ( 𝑥  prefix  ( 𝑁  +  1 ) )  =  𝑊  →  ( 𝑁  ∈  ℕ0  →  ( 𝑑  prefix  ( ( ♯ ‘ 𝑑 )  −  1 ) )  =  ( 𝑥  prefix  ( ( ♯ ‘ 𝑑 )  −  1 ) ) ) ) ) | 
						
							| 67 | 66 | com12 | ⊢ ( ( 𝑥  prefix  ( 𝑁  +  1 ) )  =  𝑊  →  ( ( ( ♯ ‘ 𝑑 )  =  ( 𝑁  +  2 )  ∧  ( 𝑑  prefix  ( 𝑁  +  1 ) )  =  𝑊 )  →  ( 𝑁  ∈  ℕ0  →  ( 𝑑  prefix  ( ( ♯ ‘ 𝑑 )  −  1 ) )  =  ( 𝑥  prefix  ( ( ♯ ‘ 𝑑 )  −  1 ) ) ) ) ) | 
						
							| 68 | 67 | 3ad2ant2 | ⊢ ( ( ( ♯ ‘ 𝑥 )  =  ( 𝑁  +  2 )  ∧  ( 𝑥  prefix  ( 𝑁  +  1 ) )  =  𝑊  ∧  { ( lastS ‘ 𝑊 ) ,  ( lastS ‘ 𝑥 ) }  ∈  𝐸 )  →  ( ( ( ♯ ‘ 𝑑 )  =  ( 𝑁  +  2 )  ∧  ( 𝑑  prefix  ( 𝑁  +  1 ) )  =  𝑊 )  →  ( 𝑁  ∈  ℕ0  →  ( 𝑑  prefix  ( ( ♯ ‘ 𝑑 )  −  1 ) )  =  ( 𝑥  prefix  ( ( ♯ ‘ 𝑑 )  −  1 ) ) ) ) ) | 
						
							| 69 | 68 | adantl | ⊢ ( ( 𝑥  ∈  Word  𝑉  ∧  ( ( ♯ ‘ 𝑥 )  =  ( 𝑁  +  2 )  ∧  ( 𝑥  prefix  ( 𝑁  +  1 ) )  =  𝑊  ∧  { ( lastS ‘ 𝑊 ) ,  ( lastS ‘ 𝑥 ) }  ∈  𝐸 ) )  →  ( ( ( ♯ ‘ 𝑑 )  =  ( 𝑁  +  2 )  ∧  ( 𝑑  prefix  ( 𝑁  +  1 ) )  =  𝑊 )  →  ( 𝑁  ∈  ℕ0  →  ( 𝑑  prefix  ( ( ♯ ‘ 𝑑 )  −  1 ) )  =  ( 𝑥  prefix  ( ( ♯ ‘ 𝑑 )  −  1 ) ) ) ) ) | 
						
							| 70 | 69 | com12 | ⊢ ( ( ( ♯ ‘ 𝑑 )  =  ( 𝑁  +  2 )  ∧  ( 𝑑  prefix  ( 𝑁  +  1 ) )  =  𝑊 )  →  ( ( 𝑥  ∈  Word  𝑉  ∧  ( ( ♯ ‘ 𝑥 )  =  ( 𝑁  +  2 )  ∧  ( 𝑥  prefix  ( 𝑁  +  1 ) )  =  𝑊  ∧  { ( lastS ‘ 𝑊 ) ,  ( lastS ‘ 𝑥 ) }  ∈  𝐸 ) )  →  ( 𝑁  ∈  ℕ0  →  ( 𝑑  prefix  ( ( ♯ ‘ 𝑑 )  −  1 ) )  =  ( 𝑥  prefix  ( ( ♯ ‘ 𝑑 )  −  1 ) ) ) ) ) | 
						
							| 71 | 70 | 3adant3 | ⊢ ( ( ( ♯ ‘ 𝑑 )  =  ( 𝑁  +  2 )  ∧  ( 𝑑  prefix  ( 𝑁  +  1 ) )  =  𝑊  ∧  { ( lastS ‘ 𝑊 ) ,  ( lastS ‘ 𝑑 ) }  ∈  𝐸 )  →  ( ( 𝑥  ∈  Word  𝑉  ∧  ( ( ♯ ‘ 𝑥 )  =  ( 𝑁  +  2 )  ∧  ( 𝑥  prefix  ( 𝑁  +  1 ) )  =  𝑊  ∧  { ( lastS ‘ 𝑊 ) ,  ( lastS ‘ 𝑥 ) }  ∈  𝐸 ) )  →  ( 𝑁  ∈  ℕ0  →  ( 𝑑  prefix  ( ( ♯ ‘ 𝑑 )  −  1 ) )  =  ( 𝑥  prefix  ( ( ♯ ‘ 𝑑 )  −  1 ) ) ) ) ) | 
						
							| 72 | 71 | adantl | ⊢ ( ( 𝑑  ∈  Word  𝑉  ∧  ( ( ♯ ‘ 𝑑 )  =  ( 𝑁  +  2 )  ∧  ( 𝑑  prefix  ( 𝑁  +  1 ) )  =  𝑊  ∧  { ( lastS ‘ 𝑊 ) ,  ( lastS ‘ 𝑑 ) }  ∈  𝐸 ) )  →  ( ( 𝑥  ∈  Word  𝑉  ∧  ( ( ♯ ‘ 𝑥 )  =  ( 𝑁  +  2 )  ∧  ( 𝑥  prefix  ( 𝑁  +  1 ) )  =  𝑊  ∧  { ( lastS ‘ 𝑊 ) ,  ( lastS ‘ 𝑥 ) }  ∈  𝐸 ) )  →  ( 𝑁  ∈  ℕ0  →  ( 𝑑  prefix  ( ( ♯ ‘ 𝑑 )  −  1 ) )  =  ( 𝑥  prefix  ( ( ♯ ‘ 𝑑 )  −  1 ) ) ) ) ) | 
						
							| 73 | 72 | imp31 | ⊢ ( ( ( ( 𝑑  ∈  Word  𝑉  ∧  ( ( ♯ ‘ 𝑑 )  =  ( 𝑁  +  2 )  ∧  ( 𝑑  prefix  ( 𝑁  +  1 ) )  =  𝑊  ∧  { ( lastS ‘ 𝑊 ) ,  ( lastS ‘ 𝑑 ) }  ∈  𝐸 ) )  ∧  ( 𝑥  ∈  Word  𝑉  ∧  ( ( ♯ ‘ 𝑥 )  =  ( 𝑁  +  2 )  ∧  ( 𝑥  prefix  ( 𝑁  +  1 ) )  =  𝑊  ∧  { ( lastS ‘ 𝑊 ) ,  ( lastS ‘ 𝑥 ) }  ∈  𝐸 ) ) )  ∧  𝑁  ∈  ℕ0 )  →  ( 𝑑  prefix  ( ( ♯ ‘ 𝑑 )  −  1 ) )  =  ( 𝑥  prefix  ( ( ♯ ‘ 𝑑 )  −  1 ) ) ) | 
						
							| 74 | 73 | adantr | ⊢ ( ( ( ( ( 𝑑  ∈  Word  𝑉  ∧  ( ( ♯ ‘ 𝑑 )  =  ( 𝑁  +  2 )  ∧  ( 𝑑  prefix  ( 𝑁  +  1 ) )  =  𝑊  ∧  { ( lastS ‘ 𝑊 ) ,  ( lastS ‘ 𝑑 ) }  ∈  𝐸 ) )  ∧  ( 𝑥  ∈  Word  𝑉  ∧  ( ( ♯ ‘ 𝑥 )  =  ( 𝑁  +  2 )  ∧  ( 𝑥  prefix  ( 𝑁  +  1 ) )  =  𝑊  ∧  { ( lastS ‘ 𝑊 ) ,  ( lastS ‘ 𝑥 ) }  ∈  𝐸 ) ) )  ∧  𝑁  ∈  ℕ0 )  ∧  ( lastS ‘ 𝑑 )  =  ( lastS ‘ 𝑥 ) )  →  ( 𝑑  prefix  ( ( ♯ ‘ 𝑑 )  −  1 ) )  =  ( 𝑥  prefix  ( ( ♯ ‘ 𝑑 )  −  1 ) ) ) | 
						
							| 75 |  | simpl | ⊢ ( ( 𝑑  ∈  Word  𝑉  ∧  ( ( ♯ ‘ 𝑑 )  =  ( 𝑁  +  2 )  ∧  ( 𝑑  prefix  ( 𝑁  +  1 ) )  =  𝑊  ∧  { ( lastS ‘ 𝑊 ) ,  ( lastS ‘ 𝑑 ) }  ∈  𝐸 ) )  →  𝑑  ∈  Word  𝑉 ) | 
						
							| 76 |  | simpl | ⊢ ( ( 𝑥  ∈  Word  𝑉  ∧  ( ( ♯ ‘ 𝑥 )  =  ( 𝑁  +  2 )  ∧  ( 𝑥  prefix  ( 𝑁  +  1 ) )  =  𝑊  ∧  { ( lastS ‘ 𝑊 ) ,  ( lastS ‘ 𝑥 ) }  ∈  𝐸 ) )  →  𝑥  ∈  Word  𝑉 ) | 
						
							| 77 | 75 76 | anim12i | ⊢ ( ( ( 𝑑  ∈  Word  𝑉  ∧  ( ( ♯ ‘ 𝑑 )  =  ( 𝑁  +  2 )  ∧  ( 𝑑  prefix  ( 𝑁  +  1 ) )  =  𝑊  ∧  { ( lastS ‘ 𝑊 ) ,  ( lastS ‘ 𝑑 ) }  ∈  𝐸 ) )  ∧  ( 𝑥  ∈  Word  𝑉  ∧  ( ( ♯ ‘ 𝑥 )  =  ( 𝑁  +  2 )  ∧  ( 𝑥  prefix  ( 𝑁  +  1 ) )  =  𝑊  ∧  { ( lastS ‘ 𝑊 ) ,  ( lastS ‘ 𝑥 ) }  ∈  𝐸 ) ) )  →  ( 𝑑  ∈  Word  𝑉  ∧  𝑥  ∈  Word  𝑉 ) ) | 
						
							| 78 | 77 | adantr | ⊢ ( ( ( ( 𝑑  ∈  Word  𝑉  ∧  ( ( ♯ ‘ 𝑑 )  =  ( 𝑁  +  2 )  ∧  ( 𝑑  prefix  ( 𝑁  +  1 ) )  =  𝑊  ∧  { ( lastS ‘ 𝑊 ) ,  ( lastS ‘ 𝑑 ) }  ∈  𝐸 ) )  ∧  ( 𝑥  ∈  Word  𝑉  ∧  ( ( ♯ ‘ 𝑥 )  =  ( 𝑁  +  2 )  ∧  ( 𝑥  prefix  ( 𝑁  +  1 ) )  =  𝑊  ∧  { ( lastS ‘ 𝑊 ) ,  ( lastS ‘ 𝑥 ) }  ∈  𝐸 ) ) )  ∧  𝑁  ∈  ℕ0 )  →  ( 𝑑  ∈  Word  𝑉  ∧  𝑥  ∈  Word  𝑉 ) ) | 
						
							| 79 |  | nn0re | ⊢ ( 𝑁  ∈  ℕ0  →  𝑁  ∈  ℝ ) | 
						
							| 80 |  | 2re | ⊢ 2  ∈  ℝ | 
						
							| 81 | 80 | a1i | ⊢ ( 𝑁  ∈  ℕ0  →  2  ∈  ℝ ) | 
						
							| 82 |  | nn0ge0 | ⊢ ( 𝑁  ∈  ℕ0  →  0  ≤  𝑁 ) | 
						
							| 83 |  | 2pos | ⊢ 0  <  2 | 
						
							| 84 | 83 | a1i | ⊢ ( 𝑁  ∈  ℕ0  →  0  <  2 ) | 
						
							| 85 | 79 81 82 84 | addgegt0d | ⊢ ( 𝑁  ∈  ℕ0  →  0  <  ( 𝑁  +  2 ) ) | 
						
							| 86 | 85 | adantl | ⊢ ( ( ( ♯ ‘ 𝑑 )  =  ( 𝑁  +  2 )  ∧  𝑁  ∈  ℕ0 )  →  0  <  ( 𝑁  +  2 ) ) | 
						
							| 87 |  | breq2 | ⊢ ( ( ♯ ‘ 𝑑 )  =  ( 𝑁  +  2 )  →  ( 0  <  ( ♯ ‘ 𝑑 )  ↔  0  <  ( 𝑁  +  2 ) ) ) | 
						
							| 88 | 87 | adantr | ⊢ ( ( ( ♯ ‘ 𝑑 )  =  ( 𝑁  +  2 )  ∧  𝑁  ∈  ℕ0 )  →  ( 0  <  ( ♯ ‘ 𝑑 )  ↔  0  <  ( 𝑁  +  2 ) ) ) | 
						
							| 89 | 86 88 | mpbird | ⊢ ( ( ( ♯ ‘ 𝑑 )  =  ( 𝑁  +  2 )  ∧  𝑁  ∈  ℕ0 )  →  0  <  ( ♯ ‘ 𝑑 ) ) | 
						
							| 90 |  | hashgt0n0 | ⊢ ( ( 𝑑  ∈  Word  𝑉  ∧  0  <  ( ♯ ‘ 𝑑 ) )  →  𝑑  ≠  ∅ ) | 
						
							| 91 | 89 90 | sylan2 | ⊢ ( ( 𝑑  ∈  Word  𝑉  ∧  ( ( ♯ ‘ 𝑑 )  =  ( 𝑁  +  2 )  ∧  𝑁  ∈  ℕ0 ) )  →  𝑑  ≠  ∅ ) | 
						
							| 92 | 91 | exp32 | ⊢ ( 𝑑  ∈  Word  𝑉  →  ( ( ♯ ‘ 𝑑 )  =  ( 𝑁  +  2 )  →  ( 𝑁  ∈  ℕ0  →  𝑑  ≠  ∅ ) ) ) | 
						
							| 93 | 92 | com12 | ⊢ ( ( ♯ ‘ 𝑑 )  =  ( 𝑁  +  2 )  →  ( 𝑑  ∈  Word  𝑉  →  ( 𝑁  ∈  ℕ0  →  𝑑  ≠  ∅ ) ) ) | 
						
							| 94 | 93 | 3ad2ant1 | ⊢ ( ( ( ♯ ‘ 𝑑 )  =  ( 𝑁  +  2 )  ∧  ( 𝑑  prefix  ( 𝑁  +  1 ) )  =  𝑊  ∧  { ( lastS ‘ 𝑊 ) ,  ( lastS ‘ 𝑑 ) }  ∈  𝐸 )  →  ( 𝑑  ∈  Word  𝑉  →  ( 𝑁  ∈  ℕ0  →  𝑑  ≠  ∅ ) ) ) | 
						
							| 95 | 94 | impcom | ⊢ ( ( 𝑑  ∈  Word  𝑉  ∧  ( ( ♯ ‘ 𝑑 )  =  ( 𝑁  +  2 )  ∧  ( 𝑑  prefix  ( 𝑁  +  1 ) )  =  𝑊  ∧  { ( lastS ‘ 𝑊 ) ,  ( lastS ‘ 𝑑 ) }  ∈  𝐸 ) )  →  ( 𝑁  ∈  ℕ0  →  𝑑  ≠  ∅ ) ) | 
						
							| 96 | 95 | adantr | ⊢ ( ( ( 𝑑  ∈  Word  𝑉  ∧  ( ( ♯ ‘ 𝑑 )  =  ( 𝑁  +  2 )  ∧  ( 𝑑  prefix  ( 𝑁  +  1 ) )  =  𝑊  ∧  { ( lastS ‘ 𝑊 ) ,  ( lastS ‘ 𝑑 ) }  ∈  𝐸 ) )  ∧  ( 𝑥  ∈  Word  𝑉  ∧  ( ( ♯ ‘ 𝑥 )  =  ( 𝑁  +  2 )  ∧  ( 𝑥  prefix  ( 𝑁  +  1 ) )  =  𝑊  ∧  { ( lastS ‘ 𝑊 ) ,  ( lastS ‘ 𝑥 ) }  ∈  𝐸 ) ) )  →  ( 𝑁  ∈  ℕ0  →  𝑑  ≠  ∅ ) ) | 
						
							| 97 | 96 | imp | ⊢ ( ( ( ( 𝑑  ∈  Word  𝑉  ∧  ( ( ♯ ‘ 𝑑 )  =  ( 𝑁  +  2 )  ∧  ( 𝑑  prefix  ( 𝑁  +  1 ) )  =  𝑊  ∧  { ( lastS ‘ 𝑊 ) ,  ( lastS ‘ 𝑑 ) }  ∈  𝐸 ) )  ∧  ( 𝑥  ∈  Word  𝑉  ∧  ( ( ♯ ‘ 𝑥 )  =  ( 𝑁  +  2 )  ∧  ( 𝑥  prefix  ( 𝑁  +  1 ) )  =  𝑊  ∧  { ( lastS ‘ 𝑊 ) ,  ( lastS ‘ 𝑥 ) }  ∈  𝐸 ) ) )  ∧  𝑁  ∈  ℕ0 )  →  𝑑  ≠  ∅ ) | 
						
							| 98 | 85 | adantl | ⊢ ( ( ( ♯ ‘ 𝑥 )  =  ( 𝑁  +  2 )  ∧  𝑁  ∈  ℕ0 )  →  0  <  ( 𝑁  +  2 ) ) | 
						
							| 99 |  | breq2 | ⊢ ( ( ♯ ‘ 𝑥 )  =  ( 𝑁  +  2 )  →  ( 0  <  ( ♯ ‘ 𝑥 )  ↔  0  <  ( 𝑁  +  2 ) ) ) | 
						
							| 100 | 99 | adantr | ⊢ ( ( ( ♯ ‘ 𝑥 )  =  ( 𝑁  +  2 )  ∧  𝑁  ∈  ℕ0 )  →  ( 0  <  ( ♯ ‘ 𝑥 )  ↔  0  <  ( 𝑁  +  2 ) ) ) | 
						
							| 101 | 98 100 | mpbird | ⊢ ( ( ( ♯ ‘ 𝑥 )  =  ( 𝑁  +  2 )  ∧  𝑁  ∈  ℕ0 )  →  0  <  ( ♯ ‘ 𝑥 ) ) | 
						
							| 102 |  | hashgt0n0 | ⊢ ( ( 𝑥  ∈  Word  𝑉  ∧  0  <  ( ♯ ‘ 𝑥 ) )  →  𝑥  ≠  ∅ ) | 
						
							| 103 | 101 102 | sylan2 | ⊢ ( ( 𝑥  ∈  Word  𝑉  ∧  ( ( ♯ ‘ 𝑥 )  =  ( 𝑁  +  2 )  ∧  𝑁  ∈  ℕ0 ) )  →  𝑥  ≠  ∅ ) | 
						
							| 104 | 103 | exp32 | ⊢ ( 𝑥  ∈  Word  𝑉  →  ( ( ♯ ‘ 𝑥 )  =  ( 𝑁  +  2 )  →  ( 𝑁  ∈  ℕ0  →  𝑥  ≠  ∅ ) ) ) | 
						
							| 105 | 104 | com12 | ⊢ ( ( ♯ ‘ 𝑥 )  =  ( 𝑁  +  2 )  →  ( 𝑥  ∈  Word  𝑉  →  ( 𝑁  ∈  ℕ0  →  𝑥  ≠  ∅ ) ) ) | 
						
							| 106 | 105 | 3ad2ant1 | ⊢ ( ( ( ♯ ‘ 𝑥 )  =  ( 𝑁  +  2 )  ∧  ( 𝑥  prefix  ( 𝑁  +  1 ) )  =  𝑊  ∧  { ( lastS ‘ 𝑊 ) ,  ( lastS ‘ 𝑥 ) }  ∈  𝐸 )  →  ( 𝑥  ∈  Word  𝑉  →  ( 𝑁  ∈  ℕ0  →  𝑥  ≠  ∅ ) ) ) | 
						
							| 107 | 106 | impcom | ⊢ ( ( 𝑥  ∈  Word  𝑉  ∧  ( ( ♯ ‘ 𝑥 )  =  ( 𝑁  +  2 )  ∧  ( 𝑥  prefix  ( 𝑁  +  1 ) )  =  𝑊  ∧  { ( lastS ‘ 𝑊 ) ,  ( lastS ‘ 𝑥 ) }  ∈  𝐸 ) )  →  ( 𝑁  ∈  ℕ0  →  𝑥  ≠  ∅ ) ) | 
						
							| 108 | 107 | adantl | ⊢ ( ( ( 𝑑  ∈  Word  𝑉  ∧  ( ( ♯ ‘ 𝑑 )  =  ( 𝑁  +  2 )  ∧  ( 𝑑  prefix  ( 𝑁  +  1 ) )  =  𝑊  ∧  { ( lastS ‘ 𝑊 ) ,  ( lastS ‘ 𝑑 ) }  ∈  𝐸 ) )  ∧  ( 𝑥  ∈  Word  𝑉  ∧  ( ( ♯ ‘ 𝑥 )  =  ( 𝑁  +  2 )  ∧  ( 𝑥  prefix  ( 𝑁  +  1 ) )  =  𝑊  ∧  { ( lastS ‘ 𝑊 ) ,  ( lastS ‘ 𝑥 ) }  ∈  𝐸 ) ) )  →  ( 𝑁  ∈  ℕ0  →  𝑥  ≠  ∅ ) ) | 
						
							| 109 | 108 | imp | ⊢ ( ( ( ( 𝑑  ∈  Word  𝑉  ∧  ( ( ♯ ‘ 𝑑 )  =  ( 𝑁  +  2 )  ∧  ( 𝑑  prefix  ( 𝑁  +  1 ) )  =  𝑊  ∧  { ( lastS ‘ 𝑊 ) ,  ( lastS ‘ 𝑑 ) }  ∈  𝐸 ) )  ∧  ( 𝑥  ∈  Word  𝑉  ∧  ( ( ♯ ‘ 𝑥 )  =  ( 𝑁  +  2 )  ∧  ( 𝑥  prefix  ( 𝑁  +  1 ) )  =  𝑊  ∧  { ( lastS ‘ 𝑊 ) ,  ( lastS ‘ 𝑥 ) }  ∈  𝐸 ) ) )  ∧  𝑁  ∈  ℕ0 )  →  𝑥  ≠  ∅ ) | 
						
							| 110 | 78 97 109 | jca32 | ⊢ ( ( ( ( 𝑑  ∈  Word  𝑉  ∧  ( ( ♯ ‘ 𝑑 )  =  ( 𝑁  +  2 )  ∧  ( 𝑑  prefix  ( 𝑁  +  1 ) )  =  𝑊  ∧  { ( lastS ‘ 𝑊 ) ,  ( lastS ‘ 𝑑 ) }  ∈  𝐸 ) )  ∧  ( 𝑥  ∈  Word  𝑉  ∧  ( ( ♯ ‘ 𝑥 )  =  ( 𝑁  +  2 )  ∧  ( 𝑥  prefix  ( 𝑁  +  1 ) )  =  𝑊  ∧  { ( lastS ‘ 𝑊 ) ,  ( lastS ‘ 𝑥 ) }  ∈  𝐸 ) ) )  ∧  𝑁  ∈  ℕ0 )  →  ( ( 𝑑  ∈  Word  𝑉  ∧  𝑥  ∈  Word  𝑉 )  ∧  ( 𝑑  ≠  ∅  ∧  𝑥  ≠  ∅ ) ) ) | 
						
							| 111 | 110 | adantr | ⊢ ( ( ( ( ( 𝑑  ∈  Word  𝑉  ∧  ( ( ♯ ‘ 𝑑 )  =  ( 𝑁  +  2 )  ∧  ( 𝑑  prefix  ( 𝑁  +  1 ) )  =  𝑊  ∧  { ( lastS ‘ 𝑊 ) ,  ( lastS ‘ 𝑑 ) }  ∈  𝐸 ) )  ∧  ( 𝑥  ∈  Word  𝑉  ∧  ( ( ♯ ‘ 𝑥 )  =  ( 𝑁  +  2 )  ∧  ( 𝑥  prefix  ( 𝑁  +  1 ) )  =  𝑊  ∧  { ( lastS ‘ 𝑊 ) ,  ( lastS ‘ 𝑥 ) }  ∈  𝐸 ) ) )  ∧  𝑁  ∈  ℕ0 )  ∧  ( lastS ‘ 𝑑 )  =  ( lastS ‘ 𝑥 ) )  →  ( ( 𝑑  ∈  Word  𝑉  ∧  𝑥  ∈  Word  𝑉 )  ∧  ( 𝑑  ≠  ∅  ∧  𝑥  ≠  ∅ ) ) ) | 
						
							| 112 |  | simpl | ⊢ ( ( 𝑑  ∈  Word  𝑉  ∧  𝑥  ∈  Word  𝑉 )  →  𝑑  ∈  Word  𝑉 ) | 
						
							| 113 | 112 | adantr | ⊢ ( ( ( 𝑑  ∈  Word  𝑉  ∧  𝑥  ∈  Word  𝑉 )  ∧  ( 𝑑  ≠  ∅  ∧  𝑥  ≠  ∅ ) )  →  𝑑  ∈  Word  𝑉 ) | 
						
							| 114 |  | simpr | ⊢ ( ( 𝑑  ∈  Word  𝑉  ∧  𝑥  ∈  Word  𝑉 )  →  𝑥  ∈  Word  𝑉 ) | 
						
							| 115 | 114 | adantr | ⊢ ( ( ( 𝑑  ∈  Word  𝑉  ∧  𝑥  ∈  Word  𝑉 )  ∧  ( 𝑑  ≠  ∅  ∧  𝑥  ≠  ∅ ) )  →  𝑥  ∈  Word  𝑉 ) | 
						
							| 116 |  | hashneq0 | ⊢ ( 𝑑  ∈  Word  𝑉  →  ( 0  <  ( ♯ ‘ 𝑑 )  ↔  𝑑  ≠  ∅ ) ) | 
						
							| 117 | 116 | biimprd | ⊢ ( 𝑑  ∈  Word  𝑉  →  ( 𝑑  ≠  ∅  →  0  <  ( ♯ ‘ 𝑑 ) ) ) | 
						
							| 118 | 117 | adantr | ⊢ ( ( 𝑑  ∈  Word  𝑉  ∧  𝑥  ∈  Word  𝑉 )  →  ( 𝑑  ≠  ∅  →  0  <  ( ♯ ‘ 𝑑 ) ) ) | 
						
							| 119 | 118 | com12 | ⊢ ( 𝑑  ≠  ∅  →  ( ( 𝑑  ∈  Word  𝑉  ∧  𝑥  ∈  Word  𝑉 )  →  0  <  ( ♯ ‘ 𝑑 ) ) ) | 
						
							| 120 | 119 | adantr | ⊢ ( ( 𝑑  ≠  ∅  ∧  𝑥  ≠  ∅ )  →  ( ( 𝑑  ∈  Word  𝑉  ∧  𝑥  ∈  Word  𝑉 )  →  0  <  ( ♯ ‘ 𝑑 ) ) ) | 
						
							| 121 | 120 | impcom | ⊢ ( ( ( 𝑑  ∈  Word  𝑉  ∧  𝑥  ∈  Word  𝑉 )  ∧  ( 𝑑  ≠  ∅  ∧  𝑥  ≠  ∅ ) )  →  0  <  ( ♯ ‘ 𝑑 ) ) | 
						
							| 122 |  | pfxsuff1eqwrdeq | ⊢ ( ( 𝑑  ∈  Word  𝑉  ∧  𝑥  ∈  Word  𝑉  ∧  0  <  ( ♯ ‘ 𝑑 ) )  →  ( 𝑑  =  𝑥  ↔  ( ( ♯ ‘ 𝑑 )  =  ( ♯ ‘ 𝑥 )  ∧  ( ( 𝑑  prefix  ( ( ♯ ‘ 𝑑 )  −  1 ) )  =  ( 𝑥  prefix  ( ( ♯ ‘ 𝑑 )  −  1 ) )  ∧  ( lastS ‘ 𝑑 )  =  ( lastS ‘ 𝑥 ) ) ) ) ) | 
						
							| 123 | 113 115 121 122 | syl3anc | ⊢ ( ( ( 𝑑  ∈  Word  𝑉  ∧  𝑥  ∈  Word  𝑉 )  ∧  ( 𝑑  ≠  ∅  ∧  𝑥  ≠  ∅ ) )  →  ( 𝑑  =  𝑥  ↔  ( ( ♯ ‘ 𝑑 )  =  ( ♯ ‘ 𝑥 )  ∧  ( ( 𝑑  prefix  ( ( ♯ ‘ 𝑑 )  −  1 ) )  =  ( 𝑥  prefix  ( ( ♯ ‘ 𝑑 )  −  1 ) )  ∧  ( lastS ‘ 𝑑 )  =  ( lastS ‘ 𝑥 ) ) ) ) ) | 
						
							| 124 |  | ancom | ⊢ ( ( ( 𝑑  prefix  ( ( ♯ ‘ 𝑑 )  −  1 ) )  =  ( 𝑥  prefix  ( ( ♯ ‘ 𝑑 )  −  1 ) )  ∧  ( lastS ‘ 𝑑 )  =  ( lastS ‘ 𝑥 ) )  ↔  ( ( lastS ‘ 𝑑 )  =  ( lastS ‘ 𝑥 )  ∧  ( 𝑑  prefix  ( ( ♯ ‘ 𝑑 )  −  1 ) )  =  ( 𝑥  prefix  ( ( ♯ ‘ 𝑑 )  −  1 ) ) ) ) | 
						
							| 125 | 124 | anbi2i | ⊢ ( ( ( ♯ ‘ 𝑑 )  =  ( ♯ ‘ 𝑥 )  ∧  ( ( 𝑑  prefix  ( ( ♯ ‘ 𝑑 )  −  1 ) )  =  ( 𝑥  prefix  ( ( ♯ ‘ 𝑑 )  −  1 ) )  ∧  ( lastS ‘ 𝑑 )  =  ( lastS ‘ 𝑥 ) ) )  ↔  ( ( ♯ ‘ 𝑑 )  =  ( ♯ ‘ 𝑥 )  ∧  ( ( lastS ‘ 𝑑 )  =  ( lastS ‘ 𝑥 )  ∧  ( 𝑑  prefix  ( ( ♯ ‘ 𝑑 )  −  1 ) )  =  ( 𝑥  prefix  ( ( ♯ ‘ 𝑑 )  −  1 ) ) ) ) ) | 
						
							| 126 |  | 3anass | ⊢ ( ( ( ♯ ‘ 𝑑 )  =  ( ♯ ‘ 𝑥 )  ∧  ( lastS ‘ 𝑑 )  =  ( lastS ‘ 𝑥 )  ∧  ( 𝑑  prefix  ( ( ♯ ‘ 𝑑 )  −  1 ) )  =  ( 𝑥  prefix  ( ( ♯ ‘ 𝑑 )  −  1 ) ) )  ↔  ( ( ♯ ‘ 𝑑 )  =  ( ♯ ‘ 𝑥 )  ∧  ( ( lastS ‘ 𝑑 )  =  ( lastS ‘ 𝑥 )  ∧  ( 𝑑  prefix  ( ( ♯ ‘ 𝑑 )  −  1 ) )  =  ( 𝑥  prefix  ( ( ♯ ‘ 𝑑 )  −  1 ) ) ) ) ) | 
						
							| 127 | 125 126 | bitr4i | ⊢ ( ( ( ♯ ‘ 𝑑 )  =  ( ♯ ‘ 𝑥 )  ∧  ( ( 𝑑  prefix  ( ( ♯ ‘ 𝑑 )  −  1 ) )  =  ( 𝑥  prefix  ( ( ♯ ‘ 𝑑 )  −  1 ) )  ∧  ( lastS ‘ 𝑑 )  =  ( lastS ‘ 𝑥 ) ) )  ↔  ( ( ♯ ‘ 𝑑 )  =  ( ♯ ‘ 𝑥 )  ∧  ( lastS ‘ 𝑑 )  =  ( lastS ‘ 𝑥 )  ∧  ( 𝑑  prefix  ( ( ♯ ‘ 𝑑 )  −  1 ) )  =  ( 𝑥  prefix  ( ( ♯ ‘ 𝑑 )  −  1 ) ) ) ) | 
						
							| 128 | 123 127 | bitrdi | ⊢ ( ( ( 𝑑  ∈  Word  𝑉  ∧  𝑥  ∈  Word  𝑉 )  ∧  ( 𝑑  ≠  ∅  ∧  𝑥  ≠  ∅ ) )  →  ( 𝑑  =  𝑥  ↔  ( ( ♯ ‘ 𝑑 )  =  ( ♯ ‘ 𝑥 )  ∧  ( lastS ‘ 𝑑 )  =  ( lastS ‘ 𝑥 )  ∧  ( 𝑑  prefix  ( ( ♯ ‘ 𝑑 )  −  1 ) )  =  ( 𝑥  prefix  ( ( ♯ ‘ 𝑑 )  −  1 ) ) ) ) ) | 
						
							| 129 | 111 128 | syl | ⊢ ( ( ( ( ( 𝑑  ∈  Word  𝑉  ∧  ( ( ♯ ‘ 𝑑 )  =  ( 𝑁  +  2 )  ∧  ( 𝑑  prefix  ( 𝑁  +  1 ) )  =  𝑊  ∧  { ( lastS ‘ 𝑊 ) ,  ( lastS ‘ 𝑑 ) }  ∈  𝐸 ) )  ∧  ( 𝑥  ∈  Word  𝑉  ∧  ( ( ♯ ‘ 𝑥 )  =  ( 𝑁  +  2 )  ∧  ( 𝑥  prefix  ( 𝑁  +  1 ) )  =  𝑊  ∧  { ( lastS ‘ 𝑊 ) ,  ( lastS ‘ 𝑥 ) }  ∈  𝐸 ) ) )  ∧  𝑁  ∈  ℕ0 )  ∧  ( lastS ‘ 𝑑 )  =  ( lastS ‘ 𝑥 ) )  →  ( 𝑑  =  𝑥  ↔  ( ( ♯ ‘ 𝑑 )  =  ( ♯ ‘ 𝑥 )  ∧  ( lastS ‘ 𝑑 )  =  ( lastS ‘ 𝑥 )  ∧  ( 𝑑  prefix  ( ( ♯ ‘ 𝑑 )  −  1 ) )  =  ( 𝑥  prefix  ( ( ♯ ‘ 𝑑 )  −  1 ) ) ) ) ) | 
						
							| 130 | 40 41 74 129 | mpbir3and | ⊢ ( ( ( ( ( 𝑑  ∈  Word  𝑉  ∧  ( ( ♯ ‘ 𝑑 )  =  ( 𝑁  +  2 )  ∧  ( 𝑑  prefix  ( 𝑁  +  1 ) )  =  𝑊  ∧  { ( lastS ‘ 𝑊 ) ,  ( lastS ‘ 𝑑 ) }  ∈  𝐸 ) )  ∧  ( 𝑥  ∈  Word  𝑉  ∧  ( ( ♯ ‘ 𝑥 )  =  ( 𝑁  +  2 )  ∧  ( 𝑥  prefix  ( 𝑁  +  1 ) )  =  𝑊  ∧  { ( lastS ‘ 𝑊 ) ,  ( lastS ‘ 𝑥 ) }  ∈  𝐸 ) ) )  ∧  𝑁  ∈  ℕ0 )  ∧  ( lastS ‘ 𝑑 )  =  ( lastS ‘ 𝑥 ) )  →  𝑑  =  𝑥 ) | 
						
							| 131 | 130 | exp31 | ⊢ ( ( ( 𝑑  ∈  Word  𝑉  ∧  ( ( ♯ ‘ 𝑑 )  =  ( 𝑁  +  2 )  ∧  ( 𝑑  prefix  ( 𝑁  +  1 ) )  =  𝑊  ∧  { ( lastS ‘ 𝑊 ) ,  ( lastS ‘ 𝑑 ) }  ∈  𝐸 ) )  ∧  ( 𝑥  ∈  Word  𝑉  ∧  ( ( ♯ ‘ 𝑥 )  =  ( 𝑁  +  2 )  ∧  ( 𝑥  prefix  ( 𝑁  +  1 ) )  =  𝑊  ∧  { ( lastS ‘ 𝑊 ) ,  ( lastS ‘ 𝑥 ) }  ∈  𝐸 ) ) )  →  ( 𝑁  ∈  ℕ0  →  ( ( lastS ‘ 𝑑 )  =  ( lastS ‘ 𝑥 )  →  𝑑  =  𝑥 ) ) ) | 
						
							| 132 | 22 30 131 | syl2anb | ⊢ ( ( 𝑑  ∈  𝐷  ∧  𝑥  ∈  𝐷 )  →  ( 𝑁  ∈  ℕ0  →  ( ( lastS ‘ 𝑑 )  =  ( lastS ‘ 𝑥 )  →  𝑑  =  𝑥 ) ) ) | 
						
							| 133 | 132 | impcom | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( 𝑑  ∈  𝐷  ∧  𝑥  ∈  𝐷 ) )  →  ( ( lastS ‘ 𝑑 )  =  ( lastS ‘ 𝑥 )  →  𝑑  =  𝑥 ) ) | 
						
							| 134 | 14 133 | sylbid | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( 𝑑  ∈  𝐷  ∧  𝑥  ∈  𝐷 ) )  →  ( ( 𝐹 ‘ 𝑑 )  =  ( 𝐹 ‘ 𝑥 )  →  𝑑  =  𝑥 ) ) | 
						
							| 135 | 134 | ralrimivva | ⊢ ( 𝑁  ∈  ℕ0  →  ∀ 𝑑  ∈  𝐷 ∀ 𝑥  ∈  𝐷 ( ( 𝐹 ‘ 𝑑 )  =  ( 𝐹 ‘ 𝑥 )  →  𝑑  =  𝑥 ) ) | 
						
							| 136 |  | dff13 | ⊢ ( 𝐹 : 𝐷 –1-1→ 𝑅  ↔  ( 𝐹 : 𝐷 ⟶ 𝑅  ∧  ∀ 𝑑  ∈  𝐷 ∀ 𝑥  ∈  𝐷 ( ( 𝐹 ‘ 𝑑 )  =  ( 𝐹 ‘ 𝑥 )  →  𝑑  =  𝑥 ) ) ) | 
						
							| 137 | 6 135 136 | sylanbrc | ⊢ ( 𝑁  ∈  ℕ0  →  𝐹 : 𝐷 –1-1→ 𝑅 ) |