Step |
Hyp |
Ref |
Expression |
1 |
|
hashnn0pnf |
⊢ ( 𝐴 ∈ 𝑉 → ( ( ♯ ‘ 𝐴 ) ∈ ℕ0 ∨ ( ♯ ‘ 𝐴 ) = +∞ ) ) |
2 |
|
nn0re |
⊢ ( ( ♯ ‘ 𝐴 ) ∈ ℕ0 → ( ♯ ‘ 𝐴 ) ∈ ℝ ) |
3 |
|
nn0ge0 |
⊢ ( ( ♯ ‘ 𝐴 ) ∈ ℕ0 → 0 ≤ ( ♯ ‘ 𝐴 ) ) |
4 |
|
ne0gt0 |
⊢ ( ( ( ♯ ‘ 𝐴 ) ∈ ℝ ∧ 0 ≤ ( ♯ ‘ 𝐴 ) ) → ( ( ♯ ‘ 𝐴 ) ≠ 0 ↔ 0 < ( ♯ ‘ 𝐴 ) ) ) |
5 |
2 3 4
|
syl2anc |
⊢ ( ( ♯ ‘ 𝐴 ) ∈ ℕ0 → ( ( ♯ ‘ 𝐴 ) ≠ 0 ↔ 0 < ( ♯ ‘ 𝐴 ) ) ) |
6 |
5
|
bicomd |
⊢ ( ( ♯ ‘ 𝐴 ) ∈ ℕ0 → ( 0 < ( ♯ ‘ 𝐴 ) ↔ ( ♯ ‘ 𝐴 ) ≠ 0 ) ) |
7 |
|
breq2 |
⊢ ( ( ♯ ‘ 𝐴 ) = +∞ → ( 0 < ( ♯ ‘ 𝐴 ) ↔ 0 < +∞ ) ) |
8 |
|
0ltpnf |
⊢ 0 < +∞ |
9 |
|
0re |
⊢ 0 ∈ ℝ |
10 |
|
renepnf |
⊢ ( 0 ∈ ℝ → 0 ≠ +∞ ) |
11 |
9 10
|
ax-mp |
⊢ 0 ≠ +∞ |
12 |
11
|
necomi |
⊢ +∞ ≠ 0 |
13 |
8 12
|
2th |
⊢ ( 0 < +∞ ↔ +∞ ≠ 0 ) |
14 |
|
neeq1 |
⊢ ( ( ♯ ‘ 𝐴 ) = +∞ → ( ( ♯ ‘ 𝐴 ) ≠ 0 ↔ +∞ ≠ 0 ) ) |
15 |
13 14
|
bitr4id |
⊢ ( ( ♯ ‘ 𝐴 ) = +∞ → ( 0 < +∞ ↔ ( ♯ ‘ 𝐴 ) ≠ 0 ) ) |
16 |
7 15
|
bitrd |
⊢ ( ( ♯ ‘ 𝐴 ) = +∞ → ( 0 < ( ♯ ‘ 𝐴 ) ↔ ( ♯ ‘ 𝐴 ) ≠ 0 ) ) |
17 |
6 16
|
jaoi |
⊢ ( ( ( ♯ ‘ 𝐴 ) ∈ ℕ0 ∨ ( ♯ ‘ 𝐴 ) = +∞ ) → ( 0 < ( ♯ ‘ 𝐴 ) ↔ ( ♯ ‘ 𝐴 ) ≠ 0 ) ) |
18 |
1 17
|
syl |
⊢ ( 𝐴 ∈ 𝑉 → ( 0 < ( ♯ ‘ 𝐴 ) ↔ ( ♯ ‘ 𝐴 ) ≠ 0 ) ) |
19 |
|
hasheq0 |
⊢ ( 𝐴 ∈ 𝑉 → ( ( ♯ ‘ 𝐴 ) = 0 ↔ 𝐴 = ∅ ) ) |
20 |
19
|
necon3bid |
⊢ ( 𝐴 ∈ 𝑉 → ( ( ♯ ‘ 𝐴 ) ≠ 0 ↔ 𝐴 ≠ ∅ ) ) |
21 |
18 20
|
bitrd |
⊢ ( 𝐴 ∈ 𝑉 → ( 0 < ( ♯ ‘ 𝐴 ) ↔ 𝐴 ≠ ∅ ) ) |