| Step | Hyp | Ref | Expression | 
						
							| 1 |  | wwlksnextbij0.v | ⊢ 𝑉  =  ( Vtx ‘ 𝐺 ) | 
						
							| 2 |  | wwlksnextbij0.e | ⊢ 𝐸  =  ( Edg ‘ 𝐺 ) | 
						
							| 3 |  | wwlksnextbij0.d | ⊢ 𝐷  =  { 𝑤  ∈  Word  𝑉  ∣  ( ( ♯ ‘ 𝑤 )  =  ( 𝑁  +  2 )  ∧  ( 𝑤  prefix  ( 𝑁  +  1 ) )  =  𝑊  ∧  { ( lastS ‘ 𝑊 ) ,  ( lastS ‘ 𝑤 ) }  ∈  𝐸 ) } | 
						
							| 4 |  | wwlksnextbij0.r | ⊢ 𝑅  =  { 𝑛  ∈  𝑉  ∣  { ( lastS ‘ 𝑊 ) ,  𝑛 }  ∈  𝐸 } | 
						
							| 5 |  | wwlksnextbij0.f | ⊢ 𝐹  =  ( 𝑡  ∈  𝐷  ↦  ( lastS ‘ 𝑡 ) ) | 
						
							| 6 | 1 | wwlknbp | ⊢ ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  →  ( 𝐺  ∈  V  ∧  𝑁  ∈  ℕ0  ∧  𝑊  ∈  Word  𝑉 ) ) | 
						
							| 7 |  | simp2 | ⊢ ( ( 𝐺  ∈  V  ∧  𝑁  ∈  ℕ0  ∧  𝑊  ∈  Word  𝑉 )  →  𝑁  ∈  ℕ0 ) | 
						
							| 8 | 1 2 3 4 5 | wwlksnextfun | ⊢ ( 𝑁  ∈  ℕ0  →  𝐹 : 𝐷 ⟶ 𝑅 ) | 
						
							| 9 | 6 7 8 | 3syl | ⊢ ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  →  𝐹 : 𝐷 ⟶ 𝑅 ) | 
						
							| 10 |  | preq2 | ⊢ ( 𝑛  =  𝑟  →  { ( lastS ‘ 𝑊 ) ,  𝑛 }  =  { ( lastS ‘ 𝑊 ) ,  𝑟 } ) | 
						
							| 11 | 10 | eleq1d | ⊢ ( 𝑛  =  𝑟  →  ( { ( lastS ‘ 𝑊 ) ,  𝑛 }  ∈  𝐸  ↔  { ( lastS ‘ 𝑊 ) ,  𝑟 }  ∈  𝐸 ) ) | 
						
							| 12 | 11 4 | elrab2 | ⊢ ( 𝑟  ∈  𝑅  ↔  ( 𝑟  ∈  𝑉  ∧  { ( lastS ‘ 𝑊 ) ,  𝑟 }  ∈  𝐸 ) ) | 
						
							| 13 | 1 2 | wwlksnext | ⊢ ( ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  𝑟  ∈  𝑉  ∧  { ( lastS ‘ 𝑊 ) ,  𝑟 }  ∈  𝐸 )  →  ( 𝑊  ++  〈“ 𝑟 ”〉 )  ∈  ( ( 𝑁  +  1 )  WWalksN  𝐺 ) ) | 
						
							| 14 | 13 | 3expb | ⊢ ( ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ( 𝑟  ∈  𝑉  ∧  { ( lastS ‘ 𝑊 ) ,  𝑟 }  ∈  𝐸 ) )  →  ( 𝑊  ++  〈“ 𝑟 ”〉 )  ∈  ( ( 𝑁  +  1 )  WWalksN  𝐺 ) ) | 
						
							| 15 |  | s1cl | ⊢ ( 𝑟  ∈  𝑉  →  〈“ 𝑟 ”〉  ∈  Word  𝑉 ) | 
						
							| 16 |  | pfxccat1 | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  〈“ 𝑟 ”〉  ∈  Word  𝑉 )  →  ( ( 𝑊  ++  〈“ 𝑟 ”〉 )  prefix  ( ♯ ‘ 𝑊 ) )  =  𝑊 ) | 
						
							| 17 | 15 16 | sylan2 | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝑟  ∈  𝑉 )  →  ( ( 𝑊  ++  〈“ 𝑟 ”〉 )  prefix  ( ♯ ‘ 𝑊 ) )  =  𝑊 ) | 
						
							| 18 | 17 | ex | ⊢ ( 𝑊  ∈  Word  𝑉  →  ( 𝑟  ∈  𝑉  →  ( ( 𝑊  ++  〈“ 𝑟 ”〉 )  prefix  ( ♯ ‘ 𝑊 ) )  =  𝑊 ) ) | 
						
							| 19 | 18 | adantr | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑊 )  =  ( 𝑁  +  1 ) )  →  ( 𝑟  ∈  𝑉  →  ( ( 𝑊  ++  〈“ 𝑟 ”〉 )  prefix  ( ♯ ‘ 𝑊 ) )  =  𝑊 ) ) | 
						
							| 20 |  | oveq2 | ⊢ ( ( 𝑁  +  1 )  =  ( ♯ ‘ 𝑊 )  →  ( ( 𝑊  ++  〈“ 𝑟 ”〉 )  prefix  ( 𝑁  +  1 ) )  =  ( ( 𝑊  ++  〈“ 𝑟 ”〉 )  prefix  ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 21 | 20 | eqcoms | ⊢ ( ( ♯ ‘ 𝑊 )  =  ( 𝑁  +  1 )  →  ( ( 𝑊  ++  〈“ 𝑟 ”〉 )  prefix  ( 𝑁  +  1 ) )  =  ( ( 𝑊  ++  〈“ 𝑟 ”〉 )  prefix  ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 22 | 21 | eqeq1d | ⊢ ( ( ♯ ‘ 𝑊 )  =  ( 𝑁  +  1 )  →  ( ( ( 𝑊  ++  〈“ 𝑟 ”〉 )  prefix  ( 𝑁  +  1 ) )  =  𝑊  ↔  ( ( 𝑊  ++  〈“ 𝑟 ”〉 )  prefix  ( ♯ ‘ 𝑊 ) )  =  𝑊 ) ) | 
						
							| 23 | 22 | adantl | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑊 )  =  ( 𝑁  +  1 ) )  →  ( ( ( 𝑊  ++  〈“ 𝑟 ”〉 )  prefix  ( 𝑁  +  1 ) )  =  𝑊  ↔  ( ( 𝑊  ++  〈“ 𝑟 ”〉 )  prefix  ( ♯ ‘ 𝑊 ) )  =  𝑊 ) ) | 
						
							| 24 | 19 23 | sylibrd | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑊 )  =  ( 𝑁  +  1 ) )  →  ( 𝑟  ∈  𝑉  →  ( ( 𝑊  ++  〈“ 𝑟 ”〉 )  prefix  ( 𝑁  +  1 ) )  =  𝑊 ) ) | 
						
							| 25 | 24 | 3adant3 | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑊 )  =  ( 𝑁  +  1 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑁 ) { ( 𝑊 ‘ 𝑖 ) ,  ( 𝑊 ‘ ( 𝑖  +  1 ) ) }  ∈  𝐸 )  →  ( 𝑟  ∈  𝑉  →  ( ( 𝑊  ++  〈“ 𝑟 ”〉 )  prefix  ( 𝑁  +  1 ) )  =  𝑊 ) ) | 
						
							| 26 | 1 2 | wwlknp | ⊢ ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  →  ( 𝑊  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑊 )  =  ( 𝑁  +  1 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑁 ) { ( 𝑊 ‘ 𝑖 ) ,  ( 𝑊 ‘ ( 𝑖  +  1 ) ) }  ∈  𝐸 ) ) | 
						
							| 27 | 25 26 | syl11 | ⊢ ( 𝑟  ∈  𝑉  →  ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  →  ( ( 𝑊  ++  〈“ 𝑟 ”〉 )  prefix  ( 𝑁  +  1 ) )  =  𝑊 ) ) | 
						
							| 28 | 27 | adantr | ⊢ ( ( 𝑟  ∈  𝑉  ∧  { ( lastS ‘ 𝑊 ) ,  𝑟 }  ∈  𝐸 )  →  ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  →  ( ( 𝑊  ++  〈“ 𝑟 ”〉 )  prefix  ( 𝑁  +  1 ) )  =  𝑊 ) ) | 
						
							| 29 | 28 | impcom | ⊢ ( ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ( 𝑟  ∈  𝑉  ∧  { ( lastS ‘ 𝑊 ) ,  𝑟 }  ∈  𝐸 ) )  →  ( ( 𝑊  ++  〈“ 𝑟 ”〉 )  prefix  ( 𝑁  +  1 ) )  =  𝑊 ) | 
						
							| 30 |  | lswccats1 | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝑟  ∈  𝑉 )  →  ( lastS ‘ ( 𝑊  ++  〈“ 𝑟 ”〉 ) )  =  𝑟 ) | 
						
							| 31 | 30 | eqcomd | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝑟  ∈  𝑉 )  →  𝑟  =  ( lastS ‘ ( 𝑊  ++  〈“ 𝑟 ”〉 ) ) ) | 
						
							| 32 | 31 | ex | ⊢ ( 𝑊  ∈  Word  𝑉  →  ( 𝑟  ∈  𝑉  →  𝑟  =  ( lastS ‘ ( 𝑊  ++  〈“ 𝑟 ”〉 ) ) ) ) | 
						
							| 33 | 32 | 3ad2ant3 | ⊢ ( ( 𝐺  ∈  V  ∧  𝑁  ∈  ℕ0  ∧  𝑊  ∈  Word  𝑉 )  →  ( 𝑟  ∈  𝑉  →  𝑟  =  ( lastS ‘ ( 𝑊  ++  〈“ 𝑟 ”〉 ) ) ) ) | 
						
							| 34 | 6 33 | syl | ⊢ ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  →  ( 𝑟  ∈  𝑉  →  𝑟  =  ( lastS ‘ ( 𝑊  ++  〈“ 𝑟 ”〉 ) ) ) ) | 
						
							| 35 | 34 | imp | ⊢ ( ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  𝑟  ∈  𝑉 )  →  𝑟  =  ( lastS ‘ ( 𝑊  ++  〈“ 𝑟 ”〉 ) ) ) | 
						
							| 36 | 35 | preq2d | ⊢ ( ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  𝑟  ∈  𝑉 )  →  { ( lastS ‘ 𝑊 ) ,  𝑟 }  =  { ( lastS ‘ 𝑊 ) ,  ( lastS ‘ ( 𝑊  ++  〈“ 𝑟 ”〉 ) ) } ) | 
						
							| 37 | 36 | eleq1d | ⊢ ( ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  𝑟  ∈  𝑉 )  →  ( { ( lastS ‘ 𝑊 ) ,  𝑟 }  ∈  𝐸  ↔  { ( lastS ‘ 𝑊 ) ,  ( lastS ‘ ( 𝑊  ++  〈“ 𝑟 ”〉 ) ) }  ∈  𝐸 ) ) | 
						
							| 38 | 37 | biimpd | ⊢ ( ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  𝑟  ∈  𝑉 )  →  ( { ( lastS ‘ 𝑊 ) ,  𝑟 }  ∈  𝐸  →  { ( lastS ‘ 𝑊 ) ,  ( lastS ‘ ( 𝑊  ++  〈“ 𝑟 ”〉 ) ) }  ∈  𝐸 ) ) | 
						
							| 39 | 38 | impr | ⊢ ( ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ( 𝑟  ∈  𝑉  ∧  { ( lastS ‘ 𝑊 ) ,  𝑟 }  ∈  𝐸 ) )  →  { ( lastS ‘ 𝑊 ) ,  ( lastS ‘ ( 𝑊  ++  〈“ 𝑟 ”〉 ) ) }  ∈  𝐸 ) | 
						
							| 40 | 14 29 39 | jca32 | ⊢ ( ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ( 𝑟  ∈  𝑉  ∧  { ( lastS ‘ 𝑊 ) ,  𝑟 }  ∈  𝐸 ) )  →  ( ( 𝑊  ++  〈“ 𝑟 ”〉 )  ∈  ( ( 𝑁  +  1 )  WWalksN  𝐺 )  ∧  ( ( ( 𝑊  ++  〈“ 𝑟 ”〉 )  prefix  ( 𝑁  +  1 ) )  =  𝑊  ∧  { ( lastS ‘ 𝑊 ) ,  ( lastS ‘ ( 𝑊  ++  〈“ 𝑟 ”〉 ) ) }  ∈  𝐸 ) ) ) | 
						
							| 41 | 33 6 | syl11 | ⊢ ( 𝑟  ∈  𝑉  →  ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  →  𝑟  =  ( lastS ‘ ( 𝑊  ++  〈“ 𝑟 ”〉 ) ) ) ) | 
						
							| 42 | 41 | adantr | ⊢ ( ( 𝑟  ∈  𝑉  ∧  { ( lastS ‘ 𝑊 ) ,  𝑟 }  ∈  𝐸 )  →  ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  →  𝑟  =  ( lastS ‘ ( 𝑊  ++  〈“ 𝑟 ”〉 ) ) ) ) | 
						
							| 43 | 42 | impcom | ⊢ ( ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ( 𝑟  ∈  𝑉  ∧  { ( lastS ‘ 𝑊 ) ,  𝑟 }  ∈  𝐸 ) )  →  𝑟  =  ( lastS ‘ ( 𝑊  ++  〈“ 𝑟 ”〉 ) ) ) | 
						
							| 44 |  | ovexd | ⊢ ( ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ( 𝑟  ∈  𝑉  ∧  { ( lastS ‘ 𝑊 ) ,  𝑟 }  ∈  𝐸 ) )  →  ( 𝑊  ++  〈“ 𝑟 ”〉 )  ∈  V ) | 
						
							| 45 |  | eleq1 | ⊢ ( 𝑑  =  ( 𝑊  ++  〈“ 𝑟 ”〉 )  →  ( 𝑑  ∈  ( ( 𝑁  +  1 )  WWalksN  𝐺 )  ↔  ( 𝑊  ++  〈“ 𝑟 ”〉 )  ∈  ( ( 𝑁  +  1 )  WWalksN  𝐺 ) ) ) | 
						
							| 46 |  | oveq1 | ⊢ ( 𝑑  =  ( 𝑊  ++  〈“ 𝑟 ”〉 )  →  ( 𝑑  prefix  ( 𝑁  +  1 ) )  =  ( ( 𝑊  ++  〈“ 𝑟 ”〉 )  prefix  ( 𝑁  +  1 ) ) ) | 
						
							| 47 | 46 | eqeq1d | ⊢ ( 𝑑  =  ( 𝑊  ++  〈“ 𝑟 ”〉 )  →  ( ( 𝑑  prefix  ( 𝑁  +  1 ) )  =  𝑊  ↔  ( ( 𝑊  ++  〈“ 𝑟 ”〉 )  prefix  ( 𝑁  +  1 ) )  =  𝑊 ) ) | 
						
							| 48 |  | fveq2 | ⊢ ( 𝑑  =  ( 𝑊  ++  〈“ 𝑟 ”〉 )  →  ( lastS ‘ 𝑑 )  =  ( lastS ‘ ( 𝑊  ++  〈“ 𝑟 ”〉 ) ) ) | 
						
							| 49 | 48 | preq2d | ⊢ ( 𝑑  =  ( 𝑊  ++  〈“ 𝑟 ”〉 )  →  { ( lastS ‘ 𝑊 ) ,  ( lastS ‘ 𝑑 ) }  =  { ( lastS ‘ 𝑊 ) ,  ( lastS ‘ ( 𝑊  ++  〈“ 𝑟 ”〉 ) ) } ) | 
						
							| 50 | 49 | eleq1d | ⊢ ( 𝑑  =  ( 𝑊  ++  〈“ 𝑟 ”〉 )  →  ( { ( lastS ‘ 𝑊 ) ,  ( lastS ‘ 𝑑 ) }  ∈  𝐸  ↔  { ( lastS ‘ 𝑊 ) ,  ( lastS ‘ ( 𝑊  ++  〈“ 𝑟 ”〉 ) ) }  ∈  𝐸 ) ) | 
						
							| 51 | 47 50 | anbi12d | ⊢ ( 𝑑  =  ( 𝑊  ++  〈“ 𝑟 ”〉 )  →  ( ( ( 𝑑  prefix  ( 𝑁  +  1 ) )  =  𝑊  ∧  { ( lastS ‘ 𝑊 ) ,  ( lastS ‘ 𝑑 ) }  ∈  𝐸 )  ↔  ( ( ( 𝑊  ++  〈“ 𝑟 ”〉 )  prefix  ( 𝑁  +  1 ) )  =  𝑊  ∧  { ( lastS ‘ 𝑊 ) ,  ( lastS ‘ ( 𝑊  ++  〈“ 𝑟 ”〉 ) ) }  ∈  𝐸 ) ) ) | 
						
							| 52 | 45 51 | anbi12d | ⊢ ( 𝑑  =  ( 𝑊  ++  〈“ 𝑟 ”〉 )  →  ( ( 𝑑  ∈  ( ( 𝑁  +  1 )  WWalksN  𝐺 )  ∧  ( ( 𝑑  prefix  ( 𝑁  +  1 ) )  =  𝑊  ∧  { ( lastS ‘ 𝑊 ) ,  ( lastS ‘ 𝑑 ) }  ∈  𝐸 ) )  ↔  ( ( 𝑊  ++  〈“ 𝑟 ”〉 )  ∈  ( ( 𝑁  +  1 )  WWalksN  𝐺 )  ∧  ( ( ( 𝑊  ++  〈“ 𝑟 ”〉 )  prefix  ( 𝑁  +  1 ) )  =  𝑊  ∧  { ( lastS ‘ 𝑊 ) ,  ( lastS ‘ ( 𝑊  ++  〈“ 𝑟 ”〉 ) ) }  ∈  𝐸 ) ) ) ) | 
						
							| 53 | 48 | eqeq2d | ⊢ ( 𝑑  =  ( 𝑊  ++  〈“ 𝑟 ”〉 )  →  ( 𝑟  =  ( lastS ‘ 𝑑 )  ↔  𝑟  =  ( lastS ‘ ( 𝑊  ++  〈“ 𝑟 ”〉 ) ) ) ) | 
						
							| 54 | 52 53 | anbi12d | ⊢ ( 𝑑  =  ( 𝑊  ++  〈“ 𝑟 ”〉 )  →  ( ( ( 𝑑  ∈  ( ( 𝑁  +  1 )  WWalksN  𝐺 )  ∧  ( ( 𝑑  prefix  ( 𝑁  +  1 ) )  =  𝑊  ∧  { ( lastS ‘ 𝑊 ) ,  ( lastS ‘ 𝑑 ) }  ∈  𝐸 ) )  ∧  𝑟  =  ( lastS ‘ 𝑑 ) )  ↔  ( ( ( 𝑊  ++  〈“ 𝑟 ”〉 )  ∈  ( ( 𝑁  +  1 )  WWalksN  𝐺 )  ∧  ( ( ( 𝑊  ++  〈“ 𝑟 ”〉 )  prefix  ( 𝑁  +  1 ) )  =  𝑊  ∧  { ( lastS ‘ 𝑊 ) ,  ( lastS ‘ ( 𝑊  ++  〈“ 𝑟 ”〉 ) ) }  ∈  𝐸 ) )  ∧  𝑟  =  ( lastS ‘ ( 𝑊  ++  〈“ 𝑟 ”〉 ) ) ) ) ) | 
						
							| 55 | 54 | bicomd | ⊢ ( 𝑑  =  ( 𝑊  ++  〈“ 𝑟 ”〉 )  →  ( ( ( ( 𝑊  ++  〈“ 𝑟 ”〉 )  ∈  ( ( 𝑁  +  1 )  WWalksN  𝐺 )  ∧  ( ( ( 𝑊  ++  〈“ 𝑟 ”〉 )  prefix  ( 𝑁  +  1 ) )  =  𝑊  ∧  { ( lastS ‘ 𝑊 ) ,  ( lastS ‘ ( 𝑊  ++  〈“ 𝑟 ”〉 ) ) }  ∈  𝐸 ) )  ∧  𝑟  =  ( lastS ‘ ( 𝑊  ++  〈“ 𝑟 ”〉 ) ) )  ↔  ( ( 𝑑  ∈  ( ( 𝑁  +  1 )  WWalksN  𝐺 )  ∧  ( ( 𝑑  prefix  ( 𝑁  +  1 ) )  =  𝑊  ∧  { ( lastS ‘ 𝑊 ) ,  ( lastS ‘ 𝑑 ) }  ∈  𝐸 ) )  ∧  𝑟  =  ( lastS ‘ 𝑑 ) ) ) ) | 
						
							| 56 | 55 | adantl | ⊢ ( ( ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ( 𝑟  ∈  𝑉  ∧  { ( lastS ‘ 𝑊 ) ,  𝑟 }  ∈  𝐸 ) )  ∧  𝑑  =  ( 𝑊  ++  〈“ 𝑟 ”〉 ) )  →  ( ( ( ( 𝑊  ++  〈“ 𝑟 ”〉 )  ∈  ( ( 𝑁  +  1 )  WWalksN  𝐺 )  ∧  ( ( ( 𝑊  ++  〈“ 𝑟 ”〉 )  prefix  ( 𝑁  +  1 ) )  =  𝑊  ∧  { ( lastS ‘ 𝑊 ) ,  ( lastS ‘ ( 𝑊  ++  〈“ 𝑟 ”〉 ) ) }  ∈  𝐸 ) )  ∧  𝑟  =  ( lastS ‘ ( 𝑊  ++  〈“ 𝑟 ”〉 ) ) )  ↔  ( ( 𝑑  ∈  ( ( 𝑁  +  1 )  WWalksN  𝐺 )  ∧  ( ( 𝑑  prefix  ( 𝑁  +  1 ) )  =  𝑊  ∧  { ( lastS ‘ 𝑊 ) ,  ( lastS ‘ 𝑑 ) }  ∈  𝐸 ) )  ∧  𝑟  =  ( lastS ‘ 𝑑 ) ) ) ) | 
						
							| 57 | 56 | biimpd | ⊢ ( ( ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ( 𝑟  ∈  𝑉  ∧  { ( lastS ‘ 𝑊 ) ,  𝑟 }  ∈  𝐸 ) )  ∧  𝑑  =  ( 𝑊  ++  〈“ 𝑟 ”〉 ) )  →  ( ( ( ( 𝑊  ++  〈“ 𝑟 ”〉 )  ∈  ( ( 𝑁  +  1 )  WWalksN  𝐺 )  ∧  ( ( ( 𝑊  ++  〈“ 𝑟 ”〉 )  prefix  ( 𝑁  +  1 ) )  =  𝑊  ∧  { ( lastS ‘ 𝑊 ) ,  ( lastS ‘ ( 𝑊  ++  〈“ 𝑟 ”〉 ) ) }  ∈  𝐸 ) )  ∧  𝑟  =  ( lastS ‘ ( 𝑊  ++  〈“ 𝑟 ”〉 ) ) )  →  ( ( 𝑑  ∈  ( ( 𝑁  +  1 )  WWalksN  𝐺 )  ∧  ( ( 𝑑  prefix  ( 𝑁  +  1 ) )  =  𝑊  ∧  { ( lastS ‘ 𝑊 ) ,  ( lastS ‘ 𝑑 ) }  ∈  𝐸 ) )  ∧  𝑟  =  ( lastS ‘ 𝑑 ) ) ) ) | 
						
							| 58 | 44 57 | spcimedv | ⊢ ( ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ( 𝑟  ∈  𝑉  ∧  { ( lastS ‘ 𝑊 ) ,  𝑟 }  ∈  𝐸 ) )  →  ( ( ( ( 𝑊  ++  〈“ 𝑟 ”〉 )  ∈  ( ( 𝑁  +  1 )  WWalksN  𝐺 )  ∧  ( ( ( 𝑊  ++  〈“ 𝑟 ”〉 )  prefix  ( 𝑁  +  1 ) )  =  𝑊  ∧  { ( lastS ‘ 𝑊 ) ,  ( lastS ‘ ( 𝑊  ++  〈“ 𝑟 ”〉 ) ) }  ∈  𝐸 ) )  ∧  𝑟  =  ( lastS ‘ ( 𝑊  ++  〈“ 𝑟 ”〉 ) ) )  →  ∃ 𝑑 ( ( 𝑑  ∈  ( ( 𝑁  +  1 )  WWalksN  𝐺 )  ∧  ( ( 𝑑  prefix  ( 𝑁  +  1 ) )  =  𝑊  ∧  { ( lastS ‘ 𝑊 ) ,  ( lastS ‘ 𝑑 ) }  ∈  𝐸 ) )  ∧  𝑟  =  ( lastS ‘ 𝑑 ) ) ) ) | 
						
							| 59 | 40 43 58 | mp2and | ⊢ ( ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ( 𝑟  ∈  𝑉  ∧  { ( lastS ‘ 𝑊 ) ,  𝑟 }  ∈  𝐸 ) )  →  ∃ 𝑑 ( ( 𝑑  ∈  ( ( 𝑁  +  1 )  WWalksN  𝐺 )  ∧  ( ( 𝑑  prefix  ( 𝑁  +  1 ) )  =  𝑊  ∧  { ( lastS ‘ 𝑊 ) ,  ( lastS ‘ 𝑑 ) }  ∈  𝐸 ) )  ∧  𝑟  =  ( lastS ‘ 𝑑 ) ) ) | 
						
							| 60 |  | oveq1 | ⊢ ( 𝑤  =  𝑑  →  ( 𝑤  prefix  ( 𝑁  +  1 ) )  =  ( 𝑑  prefix  ( 𝑁  +  1 ) ) ) | 
						
							| 61 | 60 | eqeq1d | ⊢ ( 𝑤  =  𝑑  →  ( ( 𝑤  prefix  ( 𝑁  +  1 ) )  =  𝑊  ↔  ( 𝑑  prefix  ( 𝑁  +  1 ) )  =  𝑊 ) ) | 
						
							| 62 |  | fveq2 | ⊢ ( 𝑤  =  𝑑  →  ( lastS ‘ 𝑤 )  =  ( lastS ‘ 𝑑 ) ) | 
						
							| 63 | 62 | preq2d | ⊢ ( 𝑤  =  𝑑  →  { ( lastS ‘ 𝑊 ) ,  ( lastS ‘ 𝑤 ) }  =  { ( lastS ‘ 𝑊 ) ,  ( lastS ‘ 𝑑 ) } ) | 
						
							| 64 | 63 | eleq1d | ⊢ ( 𝑤  =  𝑑  →  ( { ( lastS ‘ 𝑊 ) ,  ( lastS ‘ 𝑤 ) }  ∈  𝐸  ↔  { ( lastS ‘ 𝑊 ) ,  ( lastS ‘ 𝑑 ) }  ∈  𝐸 ) ) | 
						
							| 65 | 61 64 | anbi12d | ⊢ ( 𝑤  =  𝑑  →  ( ( ( 𝑤  prefix  ( 𝑁  +  1 ) )  =  𝑊  ∧  { ( lastS ‘ 𝑊 ) ,  ( lastS ‘ 𝑤 ) }  ∈  𝐸 )  ↔  ( ( 𝑑  prefix  ( 𝑁  +  1 ) )  =  𝑊  ∧  { ( lastS ‘ 𝑊 ) ,  ( lastS ‘ 𝑑 ) }  ∈  𝐸 ) ) ) | 
						
							| 66 | 65 | elrab | ⊢ ( 𝑑  ∈  { 𝑤  ∈  ( ( 𝑁  +  1 )  WWalksN  𝐺 )  ∣  ( ( 𝑤  prefix  ( 𝑁  +  1 ) )  =  𝑊  ∧  { ( lastS ‘ 𝑊 ) ,  ( lastS ‘ 𝑤 ) }  ∈  𝐸 ) }  ↔  ( 𝑑  ∈  ( ( 𝑁  +  1 )  WWalksN  𝐺 )  ∧  ( ( 𝑑  prefix  ( 𝑁  +  1 ) )  =  𝑊  ∧  { ( lastS ‘ 𝑊 ) ,  ( lastS ‘ 𝑑 ) }  ∈  𝐸 ) ) ) | 
						
							| 67 | 66 | anbi1i | ⊢ ( ( 𝑑  ∈  { 𝑤  ∈  ( ( 𝑁  +  1 )  WWalksN  𝐺 )  ∣  ( ( 𝑤  prefix  ( 𝑁  +  1 ) )  =  𝑊  ∧  { ( lastS ‘ 𝑊 ) ,  ( lastS ‘ 𝑤 ) }  ∈  𝐸 ) }  ∧  𝑟  =  ( lastS ‘ 𝑑 ) )  ↔  ( ( 𝑑  ∈  ( ( 𝑁  +  1 )  WWalksN  𝐺 )  ∧  ( ( 𝑑  prefix  ( 𝑁  +  1 ) )  =  𝑊  ∧  { ( lastS ‘ 𝑊 ) ,  ( lastS ‘ 𝑑 ) }  ∈  𝐸 ) )  ∧  𝑟  =  ( lastS ‘ 𝑑 ) ) ) | 
						
							| 68 | 67 | exbii | ⊢ ( ∃ 𝑑 ( 𝑑  ∈  { 𝑤  ∈  ( ( 𝑁  +  1 )  WWalksN  𝐺 )  ∣  ( ( 𝑤  prefix  ( 𝑁  +  1 ) )  =  𝑊  ∧  { ( lastS ‘ 𝑊 ) ,  ( lastS ‘ 𝑤 ) }  ∈  𝐸 ) }  ∧  𝑟  =  ( lastS ‘ 𝑑 ) )  ↔  ∃ 𝑑 ( ( 𝑑  ∈  ( ( 𝑁  +  1 )  WWalksN  𝐺 )  ∧  ( ( 𝑑  prefix  ( 𝑁  +  1 ) )  =  𝑊  ∧  { ( lastS ‘ 𝑊 ) ,  ( lastS ‘ 𝑑 ) }  ∈  𝐸 ) )  ∧  𝑟  =  ( lastS ‘ 𝑑 ) ) ) | 
						
							| 69 | 59 68 | sylibr | ⊢ ( ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ( 𝑟  ∈  𝑉  ∧  { ( lastS ‘ 𝑊 ) ,  𝑟 }  ∈  𝐸 ) )  →  ∃ 𝑑 ( 𝑑  ∈  { 𝑤  ∈  ( ( 𝑁  +  1 )  WWalksN  𝐺 )  ∣  ( ( 𝑤  prefix  ( 𝑁  +  1 ) )  =  𝑊  ∧  { ( lastS ‘ 𝑊 ) ,  ( lastS ‘ 𝑤 ) }  ∈  𝐸 ) }  ∧  𝑟  =  ( lastS ‘ 𝑑 ) ) ) | 
						
							| 70 |  | df-rex | ⊢ ( ∃ 𝑑  ∈  { 𝑤  ∈  ( ( 𝑁  +  1 )  WWalksN  𝐺 )  ∣  ( ( 𝑤  prefix  ( 𝑁  +  1 ) )  =  𝑊  ∧  { ( lastS ‘ 𝑊 ) ,  ( lastS ‘ 𝑤 ) }  ∈  𝐸 ) } 𝑟  =  ( lastS ‘ 𝑑 )  ↔  ∃ 𝑑 ( 𝑑  ∈  { 𝑤  ∈  ( ( 𝑁  +  1 )  WWalksN  𝐺 )  ∣  ( ( 𝑤  prefix  ( 𝑁  +  1 ) )  =  𝑊  ∧  { ( lastS ‘ 𝑊 ) ,  ( lastS ‘ 𝑤 ) }  ∈  𝐸 ) }  ∧  𝑟  =  ( lastS ‘ 𝑑 ) ) ) | 
						
							| 71 | 69 70 | sylibr | ⊢ ( ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ( 𝑟  ∈  𝑉  ∧  { ( lastS ‘ 𝑊 ) ,  𝑟 }  ∈  𝐸 ) )  →  ∃ 𝑑  ∈  { 𝑤  ∈  ( ( 𝑁  +  1 )  WWalksN  𝐺 )  ∣  ( ( 𝑤  prefix  ( 𝑁  +  1 ) )  =  𝑊  ∧  { ( lastS ‘ 𝑊 ) ,  ( lastS ‘ 𝑤 ) }  ∈  𝐸 ) } 𝑟  =  ( lastS ‘ 𝑑 ) ) | 
						
							| 72 | 1 2 3 | wwlksnextwrd | ⊢ ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  →  𝐷  =  { 𝑤  ∈  ( ( 𝑁  +  1 )  WWalksN  𝐺 )  ∣  ( ( 𝑤  prefix  ( 𝑁  +  1 ) )  =  𝑊  ∧  { ( lastS ‘ 𝑊 ) ,  ( lastS ‘ 𝑤 ) }  ∈  𝐸 ) } ) | 
						
							| 73 | 72 | adantr | ⊢ ( ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ( 𝑟  ∈  𝑉  ∧  { ( lastS ‘ 𝑊 ) ,  𝑟 }  ∈  𝐸 ) )  →  𝐷  =  { 𝑤  ∈  ( ( 𝑁  +  1 )  WWalksN  𝐺 )  ∣  ( ( 𝑤  prefix  ( 𝑁  +  1 ) )  =  𝑊  ∧  { ( lastS ‘ 𝑊 ) ,  ( lastS ‘ 𝑤 ) }  ∈  𝐸 ) } ) | 
						
							| 74 | 71 73 | rexeqtrrdv | ⊢ ( ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ( 𝑟  ∈  𝑉  ∧  { ( lastS ‘ 𝑊 ) ,  𝑟 }  ∈  𝐸 ) )  →  ∃ 𝑑  ∈  𝐷 𝑟  =  ( lastS ‘ 𝑑 ) ) | 
						
							| 75 |  | fveq2 | ⊢ ( 𝑡  =  𝑑  →  ( lastS ‘ 𝑡 )  =  ( lastS ‘ 𝑑 ) ) | 
						
							| 76 |  | fvex | ⊢ ( lastS ‘ 𝑑 )  ∈  V | 
						
							| 77 | 75 5 76 | fvmpt | ⊢ ( 𝑑  ∈  𝐷  →  ( 𝐹 ‘ 𝑑 )  =  ( lastS ‘ 𝑑 ) ) | 
						
							| 78 | 77 | eqeq2d | ⊢ ( 𝑑  ∈  𝐷  →  ( 𝑟  =  ( 𝐹 ‘ 𝑑 )  ↔  𝑟  =  ( lastS ‘ 𝑑 ) ) ) | 
						
							| 79 | 78 | rexbiia | ⊢ ( ∃ 𝑑  ∈  𝐷 𝑟  =  ( 𝐹 ‘ 𝑑 )  ↔  ∃ 𝑑  ∈  𝐷 𝑟  =  ( lastS ‘ 𝑑 ) ) | 
						
							| 80 | 74 79 | sylibr | ⊢ ( ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ( 𝑟  ∈  𝑉  ∧  { ( lastS ‘ 𝑊 ) ,  𝑟 }  ∈  𝐸 ) )  →  ∃ 𝑑  ∈  𝐷 𝑟  =  ( 𝐹 ‘ 𝑑 ) ) | 
						
							| 81 | 12 80 | sylan2b | ⊢ ( ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  𝑟  ∈  𝑅 )  →  ∃ 𝑑  ∈  𝐷 𝑟  =  ( 𝐹 ‘ 𝑑 ) ) | 
						
							| 82 | 81 | ralrimiva | ⊢ ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  →  ∀ 𝑟  ∈  𝑅 ∃ 𝑑  ∈  𝐷 𝑟  =  ( 𝐹 ‘ 𝑑 ) ) | 
						
							| 83 |  | dffo3 | ⊢ ( 𝐹 : 𝐷 –onto→ 𝑅  ↔  ( 𝐹 : 𝐷 ⟶ 𝑅  ∧  ∀ 𝑟  ∈  𝑅 ∃ 𝑑  ∈  𝐷 𝑟  =  ( 𝐹 ‘ 𝑑 ) ) ) | 
						
							| 84 | 9 82 83 | sylanbrc | ⊢ ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  →  𝐹 : 𝐷 –onto→ 𝑅 ) |