| Step | Hyp | Ref | Expression | 
						
							| 1 |  | wwlksnextbij0.v | ⊢ 𝑉  =  ( Vtx ‘ 𝐺 ) | 
						
							| 2 |  | wwlksnextbij0.e | ⊢ 𝐸  =  ( Edg ‘ 𝐺 ) | 
						
							| 3 |  | wwlksnextbij0.d | ⊢ 𝐷  =  { 𝑤  ∈  Word  𝑉  ∣  ( ( ♯ ‘ 𝑤 )  =  ( 𝑁  +  2 )  ∧  ( 𝑤  prefix  ( 𝑁  +  1 ) )  =  𝑊  ∧  { ( lastS ‘ 𝑊 ) ,  ( lastS ‘ 𝑤 ) }  ∈  𝐸 ) } | 
						
							| 4 |  | wwlksnextbij0.r | ⊢ 𝑅  =  { 𝑛  ∈  𝑉  ∣  { ( lastS ‘ 𝑊 ) ,  𝑛 }  ∈  𝐸 } | 
						
							| 5 |  | wwlksnextbij0.f | ⊢ 𝐹  =  ( 𝑡  ∈  𝐷  ↦  ( lastS ‘ 𝑡 ) ) | 
						
							| 6 | 1 | wwlknbp | ⊢ ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  →  ( 𝐺  ∈  V  ∧  𝑁  ∈  ℕ0  ∧  𝑊  ∈  Word  𝑉 ) ) | 
						
							| 7 | 1 2 3 4 5 | wwlksnextinj | ⊢ ( 𝑁  ∈  ℕ0  →  𝐹 : 𝐷 –1-1→ 𝑅 ) | 
						
							| 8 | 7 | 3ad2ant2 | ⊢ ( ( 𝐺  ∈  V  ∧  𝑁  ∈  ℕ0  ∧  𝑊  ∈  Word  𝑉 )  →  𝐹 : 𝐷 –1-1→ 𝑅 ) | 
						
							| 9 | 6 8 | syl | ⊢ ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  →  𝐹 : 𝐷 –1-1→ 𝑅 ) | 
						
							| 10 | 1 2 3 4 5 | wwlksnextsurj | ⊢ ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  →  𝐹 : 𝐷 –onto→ 𝑅 ) | 
						
							| 11 |  | df-f1o | ⊢ ( 𝐹 : 𝐷 –1-1-onto→ 𝑅  ↔  ( 𝐹 : 𝐷 –1-1→ 𝑅  ∧  𝐹 : 𝐷 –onto→ 𝑅 ) ) | 
						
							| 12 | 9 10 11 | sylanbrc | ⊢ ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  →  𝐹 : 𝐷 –1-1-onto→ 𝑅 ) |