| Step | Hyp | Ref | Expression | 
						
							| 1 |  | wwlksnextbij0.v |  |-  V = ( Vtx ` G ) | 
						
							| 2 |  | wwlksnextbij0.e |  |-  E = ( Edg ` G ) | 
						
							| 3 |  | wwlksnextbij0.d |  |-  D = { w e. Word V | ( ( # ` w ) = ( N + 2 ) /\ ( w prefix ( N + 1 ) ) = W /\ { ( lastS ` W ) , ( lastS ` w ) } e. E ) } | 
						
							| 4 |  | wwlksnextbij0.r |  |-  R = { n e. V | { ( lastS ` W ) , n } e. E } | 
						
							| 5 |  | wwlksnextbij0.f |  |-  F = ( t e. D |-> ( lastS ` t ) ) | 
						
							| 6 | 1 | wwlknbp |  |-  ( W e. ( N WWalksN G ) -> ( G e. _V /\ N e. NN0 /\ W e. Word V ) ) | 
						
							| 7 | 1 2 3 4 5 | wwlksnextinj |  |-  ( N e. NN0 -> F : D -1-1-> R ) | 
						
							| 8 | 7 | 3ad2ant2 |  |-  ( ( G e. _V /\ N e. NN0 /\ W e. Word V ) -> F : D -1-1-> R ) | 
						
							| 9 | 6 8 | syl |  |-  ( W e. ( N WWalksN G ) -> F : D -1-1-> R ) | 
						
							| 10 | 1 2 3 4 5 | wwlksnextsurj |  |-  ( W e. ( N WWalksN G ) -> F : D -onto-> R ) | 
						
							| 11 |  | df-f1o |  |-  ( F : D -1-1-onto-> R <-> ( F : D -1-1-> R /\ F : D -onto-> R ) ) | 
						
							| 12 | 9 10 11 | sylanbrc |  |-  ( W e. ( N WWalksN G ) -> F : D -1-1-onto-> R ) |