| Step | Hyp | Ref | Expression | 
						
							| 1 |  | wwlksnext.v |  |-  V = ( Vtx ` G ) | 
						
							| 2 |  | wwlksnext.e |  |-  E = ( Edg ` G ) | 
						
							| 3 | 1 2 | wwlknp |  |-  ( W e. ( ( N + 1 ) WWalksN G ) -> ( W e. Word V /\ ( # ` W ) = ( ( N + 1 ) + 1 ) /\ A. i e. ( 0 ..^ ( N + 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. E ) ) | 
						
							| 4 |  | wwlksnred |  |-  ( N e. NN0 -> ( W e. ( ( N + 1 ) WWalksN G ) -> ( W prefix ( N + 1 ) ) e. ( N WWalksN G ) ) ) | 
						
							| 5 | 4 | ad2antrr |  |-  ( ( ( N e. NN0 /\ S e. V ) /\ ( T e. Word V /\ W = ( T ++ <" S "> ) /\ { ( lastS ` T ) , S } e. E ) ) -> ( W e. ( ( N + 1 ) WWalksN G ) -> ( W prefix ( N + 1 ) ) e. ( N WWalksN G ) ) ) | 
						
							| 6 |  | fveqeq2 |  |-  ( W = ( T ++ <" S "> ) -> ( ( # ` W ) = ( ( N + 1 ) + 1 ) <-> ( # ` ( T ++ <" S "> ) ) = ( ( N + 1 ) + 1 ) ) ) | 
						
							| 7 | 6 | 3ad2ant2 |  |-  ( ( T e. Word V /\ W = ( T ++ <" S "> ) /\ { ( lastS ` T ) , S } e. E ) -> ( ( # ` W ) = ( ( N + 1 ) + 1 ) <-> ( # ` ( T ++ <" S "> ) ) = ( ( N + 1 ) + 1 ) ) ) | 
						
							| 8 | 7 | adantl |  |-  ( ( ( N e. NN0 /\ S e. V ) /\ ( T e. Word V /\ W = ( T ++ <" S "> ) /\ { ( lastS ` T ) , S } e. E ) ) -> ( ( # ` W ) = ( ( N + 1 ) + 1 ) <-> ( # ` ( T ++ <" S "> ) ) = ( ( N + 1 ) + 1 ) ) ) | 
						
							| 9 |  | s1cl |  |-  ( S e. V -> <" S "> e. Word V ) | 
						
							| 10 | 9 | adantl |  |-  ( ( N e. NN0 /\ S e. V ) -> <" S "> e. Word V ) | 
						
							| 11 | 10 | anim1ci |  |-  ( ( ( N e. NN0 /\ S e. V ) /\ T e. Word V ) -> ( T e. Word V /\ <" S "> e. Word V ) ) | 
						
							| 12 |  | ccatlen |  |-  ( ( T e. Word V /\ <" S "> e. Word V ) -> ( # ` ( T ++ <" S "> ) ) = ( ( # ` T ) + ( # ` <" S "> ) ) ) | 
						
							| 13 | 11 12 | syl |  |-  ( ( ( N e. NN0 /\ S e. V ) /\ T e. Word V ) -> ( # ` ( T ++ <" S "> ) ) = ( ( # ` T ) + ( # ` <" S "> ) ) ) | 
						
							| 14 | 13 | eqeq1d |  |-  ( ( ( N e. NN0 /\ S e. V ) /\ T e. Word V ) -> ( ( # ` ( T ++ <" S "> ) ) = ( ( N + 1 ) + 1 ) <-> ( ( # ` T ) + ( # ` <" S "> ) ) = ( ( N + 1 ) + 1 ) ) ) | 
						
							| 15 |  | s1len |  |-  ( # ` <" S "> ) = 1 | 
						
							| 16 | 15 | a1i |  |-  ( ( ( N e. NN0 /\ S e. V ) /\ T e. Word V ) -> ( # ` <" S "> ) = 1 ) | 
						
							| 17 | 16 | oveq2d |  |-  ( ( ( N e. NN0 /\ S e. V ) /\ T e. Word V ) -> ( ( # ` T ) + ( # ` <" S "> ) ) = ( ( # ` T ) + 1 ) ) | 
						
							| 18 | 17 | eqeq1d |  |-  ( ( ( N e. NN0 /\ S e. V ) /\ T e. Word V ) -> ( ( ( # ` T ) + ( # ` <" S "> ) ) = ( ( N + 1 ) + 1 ) <-> ( ( # ` T ) + 1 ) = ( ( N + 1 ) + 1 ) ) ) | 
						
							| 19 |  | lencl |  |-  ( T e. Word V -> ( # ` T ) e. NN0 ) | 
						
							| 20 | 19 | nn0cnd |  |-  ( T e. Word V -> ( # ` T ) e. CC ) | 
						
							| 21 | 20 | adantl |  |-  ( ( ( N e. NN0 /\ S e. V ) /\ T e. Word V ) -> ( # ` T ) e. CC ) | 
						
							| 22 |  | peano2nn0 |  |-  ( N e. NN0 -> ( N + 1 ) e. NN0 ) | 
						
							| 23 | 22 | nn0cnd |  |-  ( N e. NN0 -> ( N + 1 ) e. CC ) | 
						
							| 24 | 23 | ad2antrr |  |-  ( ( ( N e. NN0 /\ S e. V ) /\ T e. Word V ) -> ( N + 1 ) e. CC ) | 
						
							| 25 |  | 1cnd |  |-  ( ( ( N e. NN0 /\ S e. V ) /\ T e. Word V ) -> 1 e. CC ) | 
						
							| 26 | 21 24 25 | addcan2d |  |-  ( ( ( N e. NN0 /\ S e. V ) /\ T e. Word V ) -> ( ( ( # ` T ) + 1 ) = ( ( N + 1 ) + 1 ) <-> ( # ` T ) = ( N + 1 ) ) ) | 
						
							| 27 | 14 18 26 | 3bitrd |  |-  ( ( ( N e. NN0 /\ S e. V ) /\ T e. Word V ) -> ( ( # ` ( T ++ <" S "> ) ) = ( ( N + 1 ) + 1 ) <-> ( # ` T ) = ( N + 1 ) ) ) | 
						
							| 28 |  | oveq2 |  |-  ( ( N + 1 ) = ( # ` T ) -> ( ( T ++ <" S "> ) prefix ( N + 1 ) ) = ( ( T ++ <" S "> ) prefix ( # ` T ) ) ) | 
						
							| 29 | 28 | eqcoms |  |-  ( ( # ` T ) = ( N + 1 ) -> ( ( T ++ <" S "> ) prefix ( N + 1 ) ) = ( ( T ++ <" S "> ) prefix ( # ` T ) ) ) | 
						
							| 30 |  | pfxccat1 |  |-  ( ( T e. Word V /\ <" S "> e. Word V ) -> ( ( T ++ <" S "> ) prefix ( # ` T ) ) = T ) | 
						
							| 31 | 11 30 | syl |  |-  ( ( ( N e. NN0 /\ S e. V ) /\ T e. Word V ) -> ( ( T ++ <" S "> ) prefix ( # ` T ) ) = T ) | 
						
							| 32 | 29 31 | sylan9eqr |  |-  ( ( ( ( N e. NN0 /\ S e. V ) /\ T e. Word V ) /\ ( # ` T ) = ( N + 1 ) ) -> ( ( T ++ <" S "> ) prefix ( N + 1 ) ) = T ) | 
						
							| 33 | 32 | ex |  |-  ( ( ( N e. NN0 /\ S e. V ) /\ T e. Word V ) -> ( ( # ` T ) = ( N + 1 ) -> ( ( T ++ <" S "> ) prefix ( N + 1 ) ) = T ) ) | 
						
							| 34 | 27 33 | sylbid |  |-  ( ( ( N e. NN0 /\ S e. V ) /\ T e. Word V ) -> ( ( # ` ( T ++ <" S "> ) ) = ( ( N + 1 ) + 1 ) -> ( ( T ++ <" S "> ) prefix ( N + 1 ) ) = T ) ) | 
						
							| 35 | 34 | 3ad2antr1 |  |-  ( ( ( N e. NN0 /\ S e. V ) /\ ( T e. Word V /\ W = ( T ++ <" S "> ) /\ { ( lastS ` T ) , S } e. E ) ) -> ( ( # ` ( T ++ <" S "> ) ) = ( ( N + 1 ) + 1 ) -> ( ( T ++ <" S "> ) prefix ( N + 1 ) ) = T ) ) | 
						
							| 36 | 8 35 | sylbid |  |-  ( ( ( N e. NN0 /\ S e. V ) /\ ( T e. Word V /\ W = ( T ++ <" S "> ) /\ { ( lastS ` T ) , S } e. E ) ) -> ( ( # ` W ) = ( ( N + 1 ) + 1 ) -> ( ( T ++ <" S "> ) prefix ( N + 1 ) ) = T ) ) | 
						
							| 37 | 36 | imp |  |-  ( ( ( ( N e. NN0 /\ S e. V ) /\ ( T e. Word V /\ W = ( T ++ <" S "> ) /\ { ( lastS ` T ) , S } e. E ) ) /\ ( # ` W ) = ( ( N + 1 ) + 1 ) ) -> ( ( T ++ <" S "> ) prefix ( N + 1 ) ) = T ) | 
						
							| 38 |  | oveq1 |  |-  ( W = ( T ++ <" S "> ) -> ( W prefix ( N + 1 ) ) = ( ( T ++ <" S "> ) prefix ( N + 1 ) ) ) | 
						
							| 39 | 38 | eqeq1d |  |-  ( W = ( T ++ <" S "> ) -> ( ( W prefix ( N + 1 ) ) = T <-> ( ( T ++ <" S "> ) prefix ( N + 1 ) ) = T ) ) | 
						
							| 40 | 39 | 3ad2ant2 |  |-  ( ( T e. Word V /\ W = ( T ++ <" S "> ) /\ { ( lastS ` T ) , S } e. E ) -> ( ( W prefix ( N + 1 ) ) = T <-> ( ( T ++ <" S "> ) prefix ( N + 1 ) ) = T ) ) | 
						
							| 41 | 40 | ad2antlr |  |-  ( ( ( ( N e. NN0 /\ S e. V ) /\ ( T e. Word V /\ W = ( T ++ <" S "> ) /\ { ( lastS ` T ) , S } e. E ) ) /\ ( # ` W ) = ( ( N + 1 ) + 1 ) ) -> ( ( W prefix ( N + 1 ) ) = T <-> ( ( T ++ <" S "> ) prefix ( N + 1 ) ) = T ) ) | 
						
							| 42 | 37 41 | mpbird |  |-  ( ( ( ( N e. NN0 /\ S e. V ) /\ ( T e. Word V /\ W = ( T ++ <" S "> ) /\ { ( lastS ` T ) , S } e. E ) ) /\ ( # ` W ) = ( ( N + 1 ) + 1 ) ) -> ( W prefix ( N + 1 ) ) = T ) | 
						
							| 43 | 42 | eleq1d |  |-  ( ( ( ( N e. NN0 /\ S e. V ) /\ ( T e. Word V /\ W = ( T ++ <" S "> ) /\ { ( lastS ` T ) , S } e. E ) ) /\ ( # ` W ) = ( ( N + 1 ) + 1 ) ) -> ( ( W prefix ( N + 1 ) ) e. ( N WWalksN G ) <-> T e. ( N WWalksN G ) ) ) | 
						
							| 44 | 43 | biimpd |  |-  ( ( ( ( N e. NN0 /\ S e. V ) /\ ( T e. Word V /\ W = ( T ++ <" S "> ) /\ { ( lastS ` T ) , S } e. E ) ) /\ ( # ` W ) = ( ( N + 1 ) + 1 ) ) -> ( ( W prefix ( N + 1 ) ) e. ( N WWalksN G ) -> T e. ( N WWalksN G ) ) ) | 
						
							| 45 | 44 | ex |  |-  ( ( ( N e. NN0 /\ S e. V ) /\ ( T e. Word V /\ W = ( T ++ <" S "> ) /\ { ( lastS ` T ) , S } e. E ) ) -> ( ( # ` W ) = ( ( N + 1 ) + 1 ) -> ( ( W prefix ( N + 1 ) ) e. ( N WWalksN G ) -> T e. ( N WWalksN G ) ) ) ) | 
						
							| 46 | 45 | com23 |  |-  ( ( ( N e. NN0 /\ S e. V ) /\ ( T e. Word V /\ W = ( T ++ <" S "> ) /\ { ( lastS ` T ) , S } e. E ) ) -> ( ( W prefix ( N + 1 ) ) e. ( N WWalksN G ) -> ( ( # ` W ) = ( ( N + 1 ) + 1 ) -> T e. ( N WWalksN G ) ) ) ) | 
						
							| 47 | 5 46 | syld |  |-  ( ( ( N e. NN0 /\ S e. V ) /\ ( T e. Word V /\ W = ( T ++ <" S "> ) /\ { ( lastS ` T ) , S } e. E ) ) -> ( W e. ( ( N + 1 ) WWalksN G ) -> ( ( # ` W ) = ( ( N + 1 ) + 1 ) -> T e. ( N WWalksN G ) ) ) ) | 
						
							| 48 | 47 | com13 |  |-  ( ( # ` W ) = ( ( N + 1 ) + 1 ) -> ( W e. ( ( N + 1 ) WWalksN G ) -> ( ( ( N e. NN0 /\ S e. V ) /\ ( T e. Word V /\ W = ( T ++ <" S "> ) /\ { ( lastS ` T ) , S } e. E ) ) -> T e. ( N WWalksN G ) ) ) ) | 
						
							| 49 | 48 | 3ad2ant2 |  |-  ( ( W e. Word V /\ ( # ` W ) = ( ( N + 1 ) + 1 ) /\ A. i e. ( 0 ..^ ( N + 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. E ) -> ( W e. ( ( N + 1 ) WWalksN G ) -> ( ( ( N e. NN0 /\ S e. V ) /\ ( T e. Word V /\ W = ( T ++ <" S "> ) /\ { ( lastS ` T ) , S } e. E ) ) -> T e. ( N WWalksN G ) ) ) ) | 
						
							| 50 | 3 49 | mpcom |  |-  ( W e. ( ( N + 1 ) WWalksN G ) -> ( ( ( N e. NN0 /\ S e. V ) /\ ( T e. Word V /\ W = ( T ++ <" S "> ) /\ { ( lastS ` T ) , S } e. E ) ) -> T e. ( N WWalksN G ) ) ) | 
						
							| 51 | 50 | com12 |  |-  ( ( ( N e. NN0 /\ S e. V ) /\ ( T e. Word V /\ W = ( T ++ <" S "> ) /\ { ( lastS ` T ) , S } e. E ) ) -> ( W e. ( ( N + 1 ) WWalksN G ) -> T e. ( N WWalksN G ) ) ) | 
						
							| 52 | 1 2 | wwlksnext |  |-  ( ( T e. ( N WWalksN G ) /\ S e. V /\ { ( lastS ` T ) , S } e. E ) -> ( T ++ <" S "> ) e. ( ( N + 1 ) WWalksN G ) ) | 
						
							| 53 |  | eleq1 |  |-  ( W = ( T ++ <" S "> ) -> ( W e. ( ( N + 1 ) WWalksN G ) <-> ( T ++ <" S "> ) e. ( ( N + 1 ) WWalksN G ) ) ) | 
						
							| 54 | 52 53 | syl5ibrcom |  |-  ( ( T e. ( N WWalksN G ) /\ S e. V /\ { ( lastS ` T ) , S } e. E ) -> ( W = ( T ++ <" S "> ) -> W e. ( ( N + 1 ) WWalksN G ) ) ) | 
						
							| 55 | 54 | 3exp |  |-  ( T e. ( N WWalksN G ) -> ( S e. V -> ( { ( lastS ` T ) , S } e. E -> ( W = ( T ++ <" S "> ) -> W e. ( ( N + 1 ) WWalksN G ) ) ) ) ) | 
						
							| 56 | 55 | com23 |  |-  ( T e. ( N WWalksN G ) -> ( { ( lastS ` T ) , S } e. E -> ( S e. V -> ( W = ( T ++ <" S "> ) -> W e. ( ( N + 1 ) WWalksN G ) ) ) ) ) | 
						
							| 57 | 56 | com14 |  |-  ( W = ( T ++ <" S "> ) -> ( { ( lastS ` T ) , S } e. E -> ( S e. V -> ( T e. ( N WWalksN G ) -> W e. ( ( N + 1 ) WWalksN G ) ) ) ) ) | 
						
							| 58 | 57 | imp |  |-  ( ( W = ( T ++ <" S "> ) /\ { ( lastS ` T ) , S } e. E ) -> ( S e. V -> ( T e. ( N WWalksN G ) -> W e. ( ( N + 1 ) WWalksN G ) ) ) ) | 
						
							| 59 | 58 | 3adant1 |  |-  ( ( T e. Word V /\ W = ( T ++ <" S "> ) /\ { ( lastS ` T ) , S } e. E ) -> ( S e. V -> ( T e. ( N WWalksN G ) -> W e. ( ( N + 1 ) WWalksN G ) ) ) ) | 
						
							| 60 | 59 | com12 |  |-  ( S e. V -> ( ( T e. Word V /\ W = ( T ++ <" S "> ) /\ { ( lastS ` T ) , S } e. E ) -> ( T e. ( N WWalksN G ) -> W e. ( ( N + 1 ) WWalksN G ) ) ) ) | 
						
							| 61 | 60 | adantl |  |-  ( ( N e. NN0 /\ S e. V ) -> ( ( T e. Word V /\ W = ( T ++ <" S "> ) /\ { ( lastS ` T ) , S } e. E ) -> ( T e. ( N WWalksN G ) -> W e. ( ( N + 1 ) WWalksN G ) ) ) ) | 
						
							| 62 | 61 | imp |  |-  ( ( ( N e. NN0 /\ S e. V ) /\ ( T e. Word V /\ W = ( T ++ <" S "> ) /\ { ( lastS ` T ) , S } e. E ) ) -> ( T e. ( N WWalksN G ) -> W e. ( ( N + 1 ) WWalksN G ) ) ) | 
						
							| 63 | 51 62 | impbid |  |-  ( ( ( N e. NN0 /\ S e. V ) /\ ( T e. Word V /\ W = ( T ++ <" S "> ) /\ { ( lastS ` T ) , S } e. E ) ) -> ( W e. ( ( N + 1 ) WWalksN G ) <-> T e. ( N WWalksN G ) ) ) |