| Step | Hyp | Ref | Expression | 
						
							| 1 |  | wwlksnext.v | ⊢ 𝑉  =  ( Vtx ‘ 𝐺 ) | 
						
							| 2 |  | wwlksnext.e | ⊢ 𝐸  =  ( Edg ‘ 𝐺 ) | 
						
							| 3 | 1 2 | wwlknp | ⊢ ( 𝑊  ∈  ( ( 𝑁  +  1 )  WWalksN  𝐺 )  →  ( 𝑊  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑊 )  =  ( ( 𝑁  +  1 )  +  1 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( 𝑁  +  1 ) ) { ( 𝑊 ‘ 𝑖 ) ,  ( 𝑊 ‘ ( 𝑖  +  1 ) ) }  ∈  𝐸 ) ) | 
						
							| 4 |  | wwlksnred | ⊢ ( 𝑁  ∈  ℕ0  →  ( 𝑊  ∈  ( ( 𝑁  +  1 )  WWalksN  𝐺 )  →  ( 𝑊  prefix  ( 𝑁  +  1 ) )  ∈  ( 𝑁  WWalksN  𝐺 ) ) ) | 
						
							| 5 | 4 | ad2antrr | ⊢ ( ( ( 𝑁  ∈  ℕ0  ∧  𝑆  ∈  𝑉 )  ∧  ( 𝑇  ∈  Word  𝑉  ∧  𝑊  =  ( 𝑇  ++  〈“ 𝑆 ”〉 )  ∧  { ( lastS ‘ 𝑇 ) ,  𝑆 }  ∈  𝐸 ) )  →  ( 𝑊  ∈  ( ( 𝑁  +  1 )  WWalksN  𝐺 )  →  ( 𝑊  prefix  ( 𝑁  +  1 ) )  ∈  ( 𝑁  WWalksN  𝐺 ) ) ) | 
						
							| 6 |  | fveqeq2 | ⊢ ( 𝑊  =  ( 𝑇  ++  〈“ 𝑆 ”〉 )  →  ( ( ♯ ‘ 𝑊 )  =  ( ( 𝑁  +  1 )  +  1 )  ↔  ( ♯ ‘ ( 𝑇  ++  〈“ 𝑆 ”〉 ) )  =  ( ( 𝑁  +  1 )  +  1 ) ) ) | 
						
							| 7 | 6 | 3ad2ant2 | ⊢ ( ( 𝑇  ∈  Word  𝑉  ∧  𝑊  =  ( 𝑇  ++  〈“ 𝑆 ”〉 )  ∧  { ( lastS ‘ 𝑇 ) ,  𝑆 }  ∈  𝐸 )  →  ( ( ♯ ‘ 𝑊 )  =  ( ( 𝑁  +  1 )  +  1 )  ↔  ( ♯ ‘ ( 𝑇  ++  〈“ 𝑆 ”〉 ) )  =  ( ( 𝑁  +  1 )  +  1 ) ) ) | 
						
							| 8 | 7 | adantl | ⊢ ( ( ( 𝑁  ∈  ℕ0  ∧  𝑆  ∈  𝑉 )  ∧  ( 𝑇  ∈  Word  𝑉  ∧  𝑊  =  ( 𝑇  ++  〈“ 𝑆 ”〉 )  ∧  { ( lastS ‘ 𝑇 ) ,  𝑆 }  ∈  𝐸 ) )  →  ( ( ♯ ‘ 𝑊 )  =  ( ( 𝑁  +  1 )  +  1 )  ↔  ( ♯ ‘ ( 𝑇  ++  〈“ 𝑆 ”〉 ) )  =  ( ( 𝑁  +  1 )  +  1 ) ) ) | 
						
							| 9 |  | s1cl | ⊢ ( 𝑆  ∈  𝑉  →  〈“ 𝑆 ”〉  ∈  Word  𝑉 ) | 
						
							| 10 | 9 | adantl | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝑆  ∈  𝑉 )  →  〈“ 𝑆 ”〉  ∈  Word  𝑉 ) | 
						
							| 11 | 10 | anim1ci | ⊢ ( ( ( 𝑁  ∈  ℕ0  ∧  𝑆  ∈  𝑉 )  ∧  𝑇  ∈  Word  𝑉 )  →  ( 𝑇  ∈  Word  𝑉  ∧  〈“ 𝑆 ”〉  ∈  Word  𝑉 ) ) | 
						
							| 12 |  | ccatlen | ⊢ ( ( 𝑇  ∈  Word  𝑉  ∧  〈“ 𝑆 ”〉  ∈  Word  𝑉 )  →  ( ♯ ‘ ( 𝑇  ++  〈“ 𝑆 ”〉 ) )  =  ( ( ♯ ‘ 𝑇 )  +  ( ♯ ‘ 〈“ 𝑆 ”〉 ) ) ) | 
						
							| 13 | 11 12 | syl | ⊢ ( ( ( 𝑁  ∈  ℕ0  ∧  𝑆  ∈  𝑉 )  ∧  𝑇  ∈  Word  𝑉 )  →  ( ♯ ‘ ( 𝑇  ++  〈“ 𝑆 ”〉 ) )  =  ( ( ♯ ‘ 𝑇 )  +  ( ♯ ‘ 〈“ 𝑆 ”〉 ) ) ) | 
						
							| 14 | 13 | eqeq1d | ⊢ ( ( ( 𝑁  ∈  ℕ0  ∧  𝑆  ∈  𝑉 )  ∧  𝑇  ∈  Word  𝑉 )  →  ( ( ♯ ‘ ( 𝑇  ++  〈“ 𝑆 ”〉 ) )  =  ( ( 𝑁  +  1 )  +  1 )  ↔  ( ( ♯ ‘ 𝑇 )  +  ( ♯ ‘ 〈“ 𝑆 ”〉 ) )  =  ( ( 𝑁  +  1 )  +  1 ) ) ) | 
						
							| 15 |  | s1len | ⊢ ( ♯ ‘ 〈“ 𝑆 ”〉 )  =  1 | 
						
							| 16 | 15 | a1i | ⊢ ( ( ( 𝑁  ∈  ℕ0  ∧  𝑆  ∈  𝑉 )  ∧  𝑇  ∈  Word  𝑉 )  →  ( ♯ ‘ 〈“ 𝑆 ”〉 )  =  1 ) | 
						
							| 17 | 16 | oveq2d | ⊢ ( ( ( 𝑁  ∈  ℕ0  ∧  𝑆  ∈  𝑉 )  ∧  𝑇  ∈  Word  𝑉 )  →  ( ( ♯ ‘ 𝑇 )  +  ( ♯ ‘ 〈“ 𝑆 ”〉 ) )  =  ( ( ♯ ‘ 𝑇 )  +  1 ) ) | 
						
							| 18 | 17 | eqeq1d | ⊢ ( ( ( 𝑁  ∈  ℕ0  ∧  𝑆  ∈  𝑉 )  ∧  𝑇  ∈  Word  𝑉 )  →  ( ( ( ♯ ‘ 𝑇 )  +  ( ♯ ‘ 〈“ 𝑆 ”〉 ) )  =  ( ( 𝑁  +  1 )  +  1 )  ↔  ( ( ♯ ‘ 𝑇 )  +  1 )  =  ( ( 𝑁  +  1 )  +  1 ) ) ) | 
						
							| 19 |  | lencl | ⊢ ( 𝑇  ∈  Word  𝑉  →  ( ♯ ‘ 𝑇 )  ∈  ℕ0 ) | 
						
							| 20 | 19 | nn0cnd | ⊢ ( 𝑇  ∈  Word  𝑉  →  ( ♯ ‘ 𝑇 )  ∈  ℂ ) | 
						
							| 21 | 20 | adantl | ⊢ ( ( ( 𝑁  ∈  ℕ0  ∧  𝑆  ∈  𝑉 )  ∧  𝑇  ∈  Word  𝑉 )  →  ( ♯ ‘ 𝑇 )  ∈  ℂ ) | 
						
							| 22 |  | peano2nn0 | ⊢ ( 𝑁  ∈  ℕ0  →  ( 𝑁  +  1 )  ∈  ℕ0 ) | 
						
							| 23 | 22 | nn0cnd | ⊢ ( 𝑁  ∈  ℕ0  →  ( 𝑁  +  1 )  ∈  ℂ ) | 
						
							| 24 | 23 | ad2antrr | ⊢ ( ( ( 𝑁  ∈  ℕ0  ∧  𝑆  ∈  𝑉 )  ∧  𝑇  ∈  Word  𝑉 )  →  ( 𝑁  +  1 )  ∈  ℂ ) | 
						
							| 25 |  | 1cnd | ⊢ ( ( ( 𝑁  ∈  ℕ0  ∧  𝑆  ∈  𝑉 )  ∧  𝑇  ∈  Word  𝑉 )  →  1  ∈  ℂ ) | 
						
							| 26 | 21 24 25 | addcan2d | ⊢ ( ( ( 𝑁  ∈  ℕ0  ∧  𝑆  ∈  𝑉 )  ∧  𝑇  ∈  Word  𝑉 )  →  ( ( ( ♯ ‘ 𝑇 )  +  1 )  =  ( ( 𝑁  +  1 )  +  1 )  ↔  ( ♯ ‘ 𝑇 )  =  ( 𝑁  +  1 ) ) ) | 
						
							| 27 | 14 18 26 | 3bitrd | ⊢ ( ( ( 𝑁  ∈  ℕ0  ∧  𝑆  ∈  𝑉 )  ∧  𝑇  ∈  Word  𝑉 )  →  ( ( ♯ ‘ ( 𝑇  ++  〈“ 𝑆 ”〉 ) )  =  ( ( 𝑁  +  1 )  +  1 )  ↔  ( ♯ ‘ 𝑇 )  =  ( 𝑁  +  1 ) ) ) | 
						
							| 28 |  | oveq2 | ⊢ ( ( 𝑁  +  1 )  =  ( ♯ ‘ 𝑇 )  →  ( ( 𝑇  ++  〈“ 𝑆 ”〉 )  prefix  ( 𝑁  +  1 ) )  =  ( ( 𝑇  ++  〈“ 𝑆 ”〉 )  prefix  ( ♯ ‘ 𝑇 ) ) ) | 
						
							| 29 | 28 | eqcoms | ⊢ ( ( ♯ ‘ 𝑇 )  =  ( 𝑁  +  1 )  →  ( ( 𝑇  ++  〈“ 𝑆 ”〉 )  prefix  ( 𝑁  +  1 ) )  =  ( ( 𝑇  ++  〈“ 𝑆 ”〉 )  prefix  ( ♯ ‘ 𝑇 ) ) ) | 
						
							| 30 |  | pfxccat1 | ⊢ ( ( 𝑇  ∈  Word  𝑉  ∧  〈“ 𝑆 ”〉  ∈  Word  𝑉 )  →  ( ( 𝑇  ++  〈“ 𝑆 ”〉 )  prefix  ( ♯ ‘ 𝑇 ) )  =  𝑇 ) | 
						
							| 31 | 11 30 | syl | ⊢ ( ( ( 𝑁  ∈  ℕ0  ∧  𝑆  ∈  𝑉 )  ∧  𝑇  ∈  Word  𝑉 )  →  ( ( 𝑇  ++  〈“ 𝑆 ”〉 )  prefix  ( ♯ ‘ 𝑇 ) )  =  𝑇 ) | 
						
							| 32 | 29 31 | sylan9eqr | ⊢ ( ( ( ( 𝑁  ∈  ℕ0  ∧  𝑆  ∈  𝑉 )  ∧  𝑇  ∈  Word  𝑉 )  ∧  ( ♯ ‘ 𝑇 )  =  ( 𝑁  +  1 ) )  →  ( ( 𝑇  ++  〈“ 𝑆 ”〉 )  prefix  ( 𝑁  +  1 ) )  =  𝑇 ) | 
						
							| 33 | 32 | ex | ⊢ ( ( ( 𝑁  ∈  ℕ0  ∧  𝑆  ∈  𝑉 )  ∧  𝑇  ∈  Word  𝑉 )  →  ( ( ♯ ‘ 𝑇 )  =  ( 𝑁  +  1 )  →  ( ( 𝑇  ++  〈“ 𝑆 ”〉 )  prefix  ( 𝑁  +  1 ) )  =  𝑇 ) ) | 
						
							| 34 | 27 33 | sylbid | ⊢ ( ( ( 𝑁  ∈  ℕ0  ∧  𝑆  ∈  𝑉 )  ∧  𝑇  ∈  Word  𝑉 )  →  ( ( ♯ ‘ ( 𝑇  ++  〈“ 𝑆 ”〉 ) )  =  ( ( 𝑁  +  1 )  +  1 )  →  ( ( 𝑇  ++  〈“ 𝑆 ”〉 )  prefix  ( 𝑁  +  1 ) )  =  𝑇 ) ) | 
						
							| 35 | 34 | 3ad2antr1 | ⊢ ( ( ( 𝑁  ∈  ℕ0  ∧  𝑆  ∈  𝑉 )  ∧  ( 𝑇  ∈  Word  𝑉  ∧  𝑊  =  ( 𝑇  ++  〈“ 𝑆 ”〉 )  ∧  { ( lastS ‘ 𝑇 ) ,  𝑆 }  ∈  𝐸 ) )  →  ( ( ♯ ‘ ( 𝑇  ++  〈“ 𝑆 ”〉 ) )  =  ( ( 𝑁  +  1 )  +  1 )  →  ( ( 𝑇  ++  〈“ 𝑆 ”〉 )  prefix  ( 𝑁  +  1 ) )  =  𝑇 ) ) | 
						
							| 36 | 8 35 | sylbid | ⊢ ( ( ( 𝑁  ∈  ℕ0  ∧  𝑆  ∈  𝑉 )  ∧  ( 𝑇  ∈  Word  𝑉  ∧  𝑊  =  ( 𝑇  ++  〈“ 𝑆 ”〉 )  ∧  { ( lastS ‘ 𝑇 ) ,  𝑆 }  ∈  𝐸 ) )  →  ( ( ♯ ‘ 𝑊 )  =  ( ( 𝑁  +  1 )  +  1 )  →  ( ( 𝑇  ++  〈“ 𝑆 ”〉 )  prefix  ( 𝑁  +  1 ) )  =  𝑇 ) ) | 
						
							| 37 | 36 | imp | ⊢ ( ( ( ( 𝑁  ∈  ℕ0  ∧  𝑆  ∈  𝑉 )  ∧  ( 𝑇  ∈  Word  𝑉  ∧  𝑊  =  ( 𝑇  ++  〈“ 𝑆 ”〉 )  ∧  { ( lastS ‘ 𝑇 ) ,  𝑆 }  ∈  𝐸 ) )  ∧  ( ♯ ‘ 𝑊 )  =  ( ( 𝑁  +  1 )  +  1 ) )  →  ( ( 𝑇  ++  〈“ 𝑆 ”〉 )  prefix  ( 𝑁  +  1 ) )  =  𝑇 ) | 
						
							| 38 |  | oveq1 | ⊢ ( 𝑊  =  ( 𝑇  ++  〈“ 𝑆 ”〉 )  →  ( 𝑊  prefix  ( 𝑁  +  1 ) )  =  ( ( 𝑇  ++  〈“ 𝑆 ”〉 )  prefix  ( 𝑁  +  1 ) ) ) | 
						
							| 39 | 38 | eqeq1d | ⊢ ( 𝑊  =  ( 𝑇  ++  〈“ 𝑆 ”〉 )  →  ( ( 𝑊  prefix  ( 𝑁  +  1 ) )  =  𝑇  ↔  ( ( 𝑇  ++  〈“ 𝑆 ”〉 )  prefix  ( 𝑁  +  1 ) )  =  𝑇 ) ) | 
						
							| 40 | 39 | 3ad2ant2 | ⊢ ( ( 𝑇  ∈  Word  𝑉  ∧  𝑊  =  ( 𝑇  ++  〈“ 𝑆 ”〉 )  ∧  { ( lastS ‘ 𝑇 ) ,  𝑆 }  ∈  𝐸 )  →  ( ( 𝑊  prefix  ( 𝑁  +  1 ) )  =  𝑇  ↔  ( ( 𝑇  ++  〈“ 𝑆 ”〉 )  prefix  ( 𝑁  +  1 ) )  =  𝑇 ) ) | 
						
							| 41 | 40 | ad2antlr | ⊢ ( ( ( ( 𝑁  ∈  ℕ0  ∧  𝑆  ∈  𝑉 )  ∧  ( 𝑇  ∈  Word  𝑉  ∧  𝑊  =  ( 𝑇  ++  〈“ 𝑆 ”〉 )  ∧  { ( lastS ‘ 𝑇 ) ,  𝑆 }  ∈  𝐸 ) )  ∧  ( ♯ ‘ 𝑊 )  =  ( ( 𝑁  +  1 )  +  1 ) )  →  ( ( 𝑊  prefix  ( 𝑁  +  1 ) )  =  𝑇  ↔  ( ( 𝑇  ++  〈“ 𝑆 ”〉 )  prefix  ( 𝑁  +  1 ) )  =  𝑇 ) ) | 
						
							| 42 | 37 41 | mpbird | ⊢ ( ( ( ( 𝑁  ∈  ℕ0  ∧  𝑆  ∈  𝑉 )  ∧  ( 𝑇  ∈  Word  𝑉  ∧  𝑊  =  ( 𝑇  ++  〈“ 𝑆 ”〉 )  ∧  { ( lastS ‘ 𝑇 ) ,  𝑆 }  ∈  𝐸 ) )  ∧  ( ♯ ‘ 𝑊 )  =  ( ( 𝑁  +  1 )  +  1 ) )  →  ( 𝑊  prefix  ( 𝑁  +  1 ) )  =  𝑇 ) | 
						
							| 43 | 42 | eleq1d | ⊢ ( ( ( ( 𝑁  ∈  ℕ0  ∧  𝑆  ∈  𝑉 )  ∧  ( 𝑇  ∈  Word  𝑉  ∧  𝑊  =  ( 𝑇  ++  〈“ 𝑆 ”〉 )  ∧  { ( lastS ‘ 𝑇 ) ,  𝑆 }  ∈  𝐸 ) )  ∧  ( ♯ ‘ 𝑊 )  =  ( ( 𝑁  +  1 )  +  1 ) )  →  ( ( 𝑊  prefix  ( 𝑁  +  1 ) )  ∈  ( 𝑁  WWalksN  𝐺 )  ↔  𝑇  ∈  ( 𝑁  WWalksN  𝐺 ) ) ) | 
						
							| 44 | 43 | biimpd | ⊢ ( ( ( ( 𝑁  ∈  ℕ0  ∧  𝑆  ∈  𝑉 )  ∧  ( 𝑇  ∈  Word  𝑉  ∧  𝑊  =  ( 𝑇  ++  〈“ 𝑆 ”〉 )  ∧  { ( lastS ‘ 𝑇 ) ,  𝑆 }  ∈  𝐸 ) )  ∧  ( ♯ ‘ 𝑊 )  =  ( ( 𝑁  +  1 )  +  1 ) )  →  ( ( 𝑊  prefix  ( 𝑁  +  1 ) )  ∈  ( 𝑁  WWalksN  𝐺 )  →  𝑇  ∈  ( 𝑁  WWalksN  𝐺 ) ) ) | 
						
							| 45 | 44 | ex | ⊢ ( ( ( 𝑁  ∈  ℕ0  ∧  𝑆  ∈  𝑉 )  ∧  ( 𝑇  ∈  Word  𝑉  ∧  𝑊  =  ( 𝑇  ++  〈“ 𝑆 ”〉 )  ∧  { ( lastS ‘ 𝑇 ) ,  𝑆 }  ∈  𝐸 ) )  →  ( ( ♯ ‘ 𝑊 )  =  ( ( 𝑁  +  1 )  +  1 )  →  ( ( 𝑊  prefix  ( 𝑁  +  1 ) )  ∈  ( 𝑁  WWalksN  𝐺 )  →  𝑇  ∈  ( 𝑁  WWalksN  𝐺 ) ) ) ) | 
						
							| 46 | 45 | com23 | ⊢ ( ( ( 𝑁  ∈  ℕ0  ∧  𝑆  ∈  𝑉 )  ∧  ( 𝑇  ∈  Word  𝑉  ∧  𝑊  =  ( 𝑇  ++  〈“ 𝑆 ”〉 )  ∧  { ( lastS ‘ 𝑇 ) ,  𝑆 }  ∈  𝐸 ) )  →  ( ( 𝑊  prefix  ( 𝑁  +  1 ) )  ∈  ( 𝑁  WWalksN  𝐺 )  →  ( ( ♯ ‘ 𝑊 )  =  ( ( 𝑁  +  1 )  +  1 )  →  𝑇  ∈  ( 𝑁  WWalksN  𝐺 ) ) ) ) | 
						
							| 47 | 5 46 | syld | ⊢ ( ( ( 𝑁  ∈  ℕ0  ∧  𝑆  ∈  𝑉 )  ∧  ( 𝑇  ∈  Word  𝑉  ∧  𝑊  =  ( 𝑇  ++  〈“ 𝑆 ”〉 )  ∧  { ( lastS ‘ 𝑇 ) ,  𝑆 }  ∈  𝐸 ) )  →  ( 𝑊  ∈  ( ( 𝑁  +  1 )  WWalksN  𝐺 )  →  ( ( ♯ ‘ 𝑊 )  =  ( ( 𝑁  +  1 )  +  1 )  →  𝑇  ∈  ( 𝑁  WWalksN  𝐺 ) ) ) ) | 
						
							| 48 | 47 | com13 | ⊢ ( ( ♯ ‘ 𝑊 )  =  ( ( 𝑁  +  1 )  +  1 )  →  ( 𝑊  ∈  ( ( 𝑁  +  1 )  WWalksN  𝐺 )  →  ( ( ( 𝑁  ∈  ℕ0  ∧  𝑆  ∈  𝑉 )  ∧  ( 𝑇  ∈  Word  𝑉  ∧  𝑊  =  ( 𝑇  ++  〈“ 𝑆 ”〉 )  ∧  { ( lastS ‘ 𝑇 ) ,  𝑆 }  ∈  𝐸 ) )  →  𝑇  ∈  ( 𝑁  WWalksN  𝐺 ) ) ) ) | 
						
							| 49 | 48 | 3ad2ant2 | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑊 )  =  ( ( 𝑁  +  1 )  +  1 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( 𝑁  +  1 ) ) { ( 𝑊 ‘ 𝑖 ) ,  ( 𝑊 ‘ ( 𝑖  +  1 ) ) }  ∈  𝐸 )  →  ( 𝑊  ∈  ( ( 𝑁  +  1 )  WWalksN  𝐺 )  →  ( ( ( 𝑁  ∈  ℕ0  ∧  𝑆  ∈  𝑉 )  ∧  ( 𝑇  ∈  Word  𝑉  ∧  𝑊  =  ( 𝑇  ++  〈“ 𝑆 ”〉 )  ∧  { ( lastS ‘ 𝑇 ) ,  𝑆 }  ∈  𝐸 ) )  →  𝑇  ∈  ( 𝑁  WWalksN  𝐺 ) ) ) ) | 
						
							| 50 | 3 49 | mpcom | ⊢ ( 𝑊  ∈  ( ( 𝑁  +  1 )  WWalksN  𝐺 )  →  ( ( ( 𝑁  ∈  ℕ0  ∧  𝑆  ∈  𝑉 )  ∧  ( 𝑇  ∈  Word  𝑉  ∧  𝑊  =  ( 𝑇  ++  〈“ 𝑆 ”〉 )  ∧  { ( lastS ‘ 𝑇 ) ,  𝑆 }  ∈  𝐸 ) )  →  𝑇  ∈  ( 𝑁  WWalksN  𝐺 ) ) ) | 
						
							| 51 | 50 | com12 | ⊢ ( ( ( 𝑁  ∈  ℕ0  ∧  𝑆  ∈  𝑉 )  ∧  ( 𝑇  ∈  Word  𝑉  ∧  𝑊  =  ( 𝑇  ++  〈“ 𝑆 ”〉 )  ∧  { ( lastS ‘ 𝑇 ) ,  𝑆 }  ∈  𝐸 ) )  →  ( 𝑊  ∈  ( ( 𝑁  +  1 )  WWalksN  𝐺 )  →  𝑇  ∈  ( 𝑁  WWalksN  𝐺 ) ) ) | 
						
							| 52 | 1 2 | wwlksnext | ⊢ ( ( 𝑇  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  𝑆  ∈  𝑉  ∧  { ( lastS ‘ 𝑇 ) ,  𝑆 }  ∈  𝐸 )  →  ( 𝑇  ++  〈“ 𝑆 ”〉 )  ∈  ( ( 𝑁  +  1 )  WWalksN  𝐺 ) ) | 
						
							| 53 |  | eleq1 | ⊢ ( 𝑊  =  ( 𝑇  ++  〈“ 𝑆 ”〉 )  →  ( 𝑊  ∈  ( ( 𝑁  +  1 )  WWalksN  𝐺 )  ↔  ( 𝑇  ++  〈“ 𝑆 ”〉 )  ∈  ( ( 𝑁  +  1 )  WWalksN  𝐺 ) ) ) | 
						
							| 54 | 52 53 | syl5ibrcom | ⊢ ( ( 𝑇  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  𝑆  ∈  𝑉  ∧  { ( lastS ‘ 𝑇 ) ,  𝑆 }  ∈  𝐸 )  →  ( 𝑊  =  ( 𝑇  ++  〈“ 𝑆 ”〉 )  →  𝑊  ∈  ( ( 𝑁  +  1 )  WWalksN  𝐺 ) ) ) | 
						
							| 55 | 54 | 3exp | ⊢ ( 𝑇  ∈  ( 𝑁  WWalksN  𝐺 )  →  ( 𝑆  ∈  𝑉  →  ( { ( lastS ‘ 𝑇 ) ,  𝑆 }  ∈  𝐸  →  ( 𝑊  =  ( 𝑇  ++  〈“ 𝑆 ”〉 )  →  𝑊  ∈  ( ( 𝑁  +  1 )  WWalksN  𝐺 ) ) ) ) ) | 
						
							| 56 | 55 | com23 | ⊢ ( 𝑇  ∈  ( 𝑁  WWalksN  𝐺 )  →  ( { ( lastS ‘ 𝑇 ) ,  𝑆 }  ∈  𝐸  →  ( 𝑆  ∈  𝑉  →  ( 𝑊  =  ( 𝑇  ++  〈“ 𝑆 ”〉 )  →  𝑊  ∈  ( ( 𝑁  +  1 )  WWalksN  𝐺 ) ) ) ) ) | 
						
							| 57 | 56 | com14 | ⊢ ( 𝑊  =  ( 𝑇  ++  〈“ 𝑆 ”〉 )  →  ( { ( lastS ‘ 𝑇 ) ,  𝑆 }  ∈  𝐸  →  ( 𝑆  ∈  𝑉  →  ( 𝑇  ∈  ( 𝑁  WWalksN  𝐺 )  →  𝑊  ∈  ( ( 𝑁  +  1 )  WWalksN  𝐺 ) ) ) ) ) | 
						
							| 58 | 57 | imp | ⊢ ( ( 𝑊  =  ( 𝑇  ++  〈“ 𝑆 ”〉 )  ∧  { ( lastS ‘ 𝑇 ) ,  𝑆 }  ∈  𝐸 )  →  ( 𝑆  ∈  𝑉  →  ( 𝑇  ∈  ( 𝑁  WWalksN  𝐺 )  →  𝑊  ∈  ( ( 𝑁  +  1 )  WWalksN  𝐺 ) ) ) ) | 
						
							| 59 | 58 | 3adant1 | ⊢ ( ( 𝑇  ∈  Word  𝑉  ∧  𝑊  =  ( 𝑇  ++  〈“ 𝑆 ”〉 )  ∧  { ( lastS ‘ 𝑇 ) ,  𝑆 }  ∈  𝐸 )  →  ( 𝑆  ∈  𝑉  →  ( 𝑇  ∈  ( 𝑁  WWalksN  𝐺 )  →  𝑊  ∈  ( ( 𝑁  +  1 )  WWalksN  𝐺 ) ) ) ) | 
						
							| 60 | 59 | com12 | ⊢ ( 𝑆  ∈  𝑉  →  ( ( 𝑇  ∈  Word  𝑉  ∧  𝑊  =  ( 𝑇  ++  〈“ 𝑆 ”〉 )  ∧  { ( lastS ‘ 𝑇 ) ,  𝑆 }  ∈  𝐸 )  →  ( 𝑇  ∈  ( 𝑁  WWalksN  𝐺 )  →  𝑊  ∈  ( ( 𝑁  +  1 )  WWalksN  𝐺 ) ) ) ) | 
						
							| 61 | 60 | adantl | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝑆  ∈  𝑉 )  →  ( ( 𝑇  ∈  Word  𝑉  ∧  𝑊  =  ( 𝑇  ++  〈“ 𝑆 ”〉 )  ∧  { ( lastS ‘ 𝑇 ) ,  𝑆 }  ∈  𝐸 )  →  ( 𝑇  ∈  ( 𝑁  WWalksN  𝐺 )  →  𝑊  ∈  ( ( 𝑁  +  1 )  WWalksN  𝐺 ) ) ) ) | 
						
							| 62 | 61 | imp | ⊢ ( ( ( 𝑁  ∈  ℕ0  ∧  𝑆  ∈  𝑉 )  ∧  ( 𝑇  ∈  Word  𝑉  ∧  𝑊  =  ( 𝑇  ++  〈“ 𝑆 ”〉 )  ∧  { ( lastS ‘ 𝑇 ) ,  𝑆 }  ∈  𝐸 ) )  →  ( 𝑇  ∈  ( 𝑁  WWalksN  𝐺 )  →  𝑊  ∈  ( ( 𝑁  +  1 )  WWalksN  𝐺 ) ) ) | 
						
							| 63 | 51 62 | impbid | ⊢ ( ( ( 𝑁  ∈  ℕ0  ∧  𝑆  ∈  𝑉 )  ∧  ( 𝑇  ∈  Word  𝑉  ∧  𝑊  =  ( 𝑇  ++  〈“ 𝑆 ”〉 )  ∧  { ( lastS ‘ 𝑇 ) ,  𝑆 }  ∈  𝐸 ) )  →  ( 𝑊  ∈  ( ( 𝑁  +  1 )  WWalksN  𝐺 )  ↔  𝑇  ∈  ( 𝑁  WWalksN  𝐺 ) ) ) |