| Step | Hyp | Ref | Expression | 
						
							| 1 |  | wwlksnredwwlkn.e | ⊢ 𝐸  =  ( Edg ‘ 𝐺 ) | 
						
							| 2 |  | eqidd | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝑊  ∈  ( ( 𝑁  +  1 )  WWalksN  𝐺 ) )  →  ( 𝑊  prefix  ( 𝑁  +  1 ) )  =  ( 𝑊  prefix  ( 𝑁  +  1 ) ) ) | 
						
							| 3 |  | eqid | ⊢ ( Vtx ‘ 𝐺 )  =  ( Vtx ‘ 𝐺 ) | 
						
							| 4 | 3 1 | wwlknp | ⊢ ( 𝑊  ∈  ( ( 𝑁  +  1 )  WWalksN  𝐺 )  →  ( 𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑊 )  =  ( ( 𝑁  +  1 )  +  1 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( 𝑁  +  1 ) ) { ( 𝑊 ‘ 𝑖 ) ,  ( 𝑊 ‘ ( 𝑖  +  1 ) ) }  ∈  𝐸 ) ) | 
						
							| 5 |  | simprl | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( 𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑊 )  =  ( ( 𝑁  +  1 )  +  1 ) ) )  →  𝑊  ∈  Word  ( Vtx ‘ 𝐺 ) ) | 
						
							| 6 |  | peano2nn0 | ⊢ ( 𝑁  ∈  ℕ0  →  ( 𝑁  +  1 )  ∈  ℕ0 ) | 
						
							| 7 |  | peano2nn0 | ⊢ ( ( 𝑁  +  1 )  ∈  ℕ0  →  ( ( 𝑁  +  1 )  +  1 )  ∈  ℕ0 ) | 
						
							| 8 | 6 7 | syl | ⊢ ( 𝑁  ∈  ℕ0  →  ( ( 𝑁  +  1 )  +  1 )  ∈  ℕ0 ) | 
						
							| 9 |  | id | ⊢ ( 𝑁  ∈  ℕ0  →  𝑁  ∈  ℕ0 ) | 
						
							| 10 |  | nn0p1nn | ⊢ ( ( 𝑁  +  1 )  ∈  ℕ0  →  ( ( 𝑁  +  1 )  +  1 )  ∈  ℕ ) | 
						
							| 11 | 6 10 | syl | ⊢ ( 𝑁  ∈  ℕ0  →  ( ( 𝑁  +  1 )  +  1 )  ∈  ℕ ) | 
						
							| 12 |  | nn0re | ⊢ ( 𝑁  ∈  ℕ0  →  𝑁  ∈  ℝ ) | 
						
							| 13 |  | id | ⊢ ( 𝑁  ∈  ℝ  →  𝑁  ∈  ℝ ) | 
						
							| 14 |  | peano2re | ⊢ ( 𝑁  ∈  ℝ  →  ( 𝑁  +  1 )  ∈  ℝ ) | 
						
							| 15 |  | peano2re | ⊢ ( ( 𝑁  +  1 )  ∈  ℝ  →  ( ( 𝑁  +  1 )  +  1 )  ∈  ℝ ) | 
						
							| 16 | 14 15 | syl | ⊢ ( 𝑁  ∈  ℝ  →  ( ( 𝑁  +  1 )  +  1 )  ∈  ℝ ) | 
						
							| 17 | 13 14 16 | 3jca | ⊢ ( 𝑁  ∈  ℝ  →  ( 𝑁  ∈  ℝ  ∧  ( 𝑁  +  1 )  ∈  ℝ  ∧  ( ( 𝑁  +  1 )  +  1 )  ∈  ℝ ) ) | 
						
							| 18 | 12 17 | syl | ⊢ ( 𝑁  ∈  ℕ0  →  ( 𝑁  ∈  ℝ  ∧  ( 𝑁  +  1 )  ∈  ℝ  ∧  ( ( 𝑁  +  1 )  +  1 )  ∈  ℝ ) ) | 
						
							| 19 | 12 | ltp1d | ⊢ ( 𝑁  ∈  ℕ0  →  𝑁  <  ( 𝑁  +  1 ) ) | 
						
							| 20 |  | nn0re | ⊢ ( ( 𝑁  +  1 )  ∈  ℕ0  →  ( 𝑁  +  1 )  ∈  ℝ ) | 
						
							| 21 | 6 20 | syl | ⊢ ( 𝑁  ∈  ℕ0  →  ( 𝑁  +  1 )  ∈  ℝ ) | 
						
							| 22 | 21 | ltp1d | ⊢ ( 𝑁  ∈  ℕ0  →  ( 𝑁  +  1 )  <  ( ( 𝑁  +  1 )  +  1 ) ) | 
						
							| 23 |  | lttr | ⊢ ( ( 𝑁  ∈  ℝ  ∧  ( 𝑁  +  1 )  ∈  ℝ  ∧  ( ( 𝑁  +  1 )  +  1 )  ∈  ℝ )  →  ( ( 𝑁  <  ( 𝑁  +  1 )  ∧  ( 𝑁  +  1 )  <  ( ( 𝑁  +  1 )  +  1 ) )  →  𝑁  <  ( ( 𝑁  +  1 )  +  1 ) ) ) | 
						
							| 24 | 23 | imp | ⊢ ( ( ( 𝑁  ∈  ℝ  ∧  ( 𝑁  +  1 )  ∈  ℝ  ∧  ( ( 𝑁  +  1 )  +  1 )  ∈  ℝ )  ∧  ( 𝑁  <  ( 𝑁  +  1 )  ∧  ( 𝑁  +  1 )  <  ( ( 𝑁  +  1 )  +  1 ) ) )  →  𝑁  <  ( ( 𝑁  +  1 )  +  1 ) ) | 
						
							| 25 | 18 19 22 24 | syl12anc | ⊢ ( 𝑁  ∈  ℕ0  →  𝑁  <  ( ( 𝑁  +  1 )  +  1 ) ) | 
						
							| 26 |  | elfzo0 | ⊢ ( 𝑁  ∈  ( 0 ..^ ( ( 𝑁  +  1 )  +  1 ) )  ↔  ( 𝑁  ∈  ℕ0  ∧  ( ( 𝑁  +  1 )  +  1 )  ∈  ℕ  ∧  𝑁  <  ( ( 𝑁  +  1 )  +  1 ) ) ) | 
						
							| 27 | 9 11 25 26 | syl3anbrc | ⊢ ( 𝑁  ∈  ℕ0  →  𝑁  ∈  ( 0 ..^ ( ( 𝑁  +  1 )  +  1 ) ) ) | 
						
							| 28 |  | fz0add1fz1 | ⊢ ( ( ( ( 𝑁  +  1 )  +  1 )  ∈  ℕ0  ∧  𝑁  ∈  ( 0 ..^ ( ( 𝑁  +  1 )  +  1 ) ) )  →  ( 𝑁  +  1 )  ∈  ( 1 ... ( ( 𝑁  +  1 )  +  1 ) ) ) | 
						
							| 29 | 8 27 28 | syl2anc | ⊢ ( 𝑁  ∈  ℕ0  →  ( 𝑁  +  1 )  ∈  ( 1 ... ( ( 𝑁  +  1 )  +  1 ) ) ) | 
						
							| 30 | 29 | adantr | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( 𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑊 )  =  ( ( 𝑁  +  1 )  +  1 ) ) )  →  ( 𝑁  +  1 )  ∈  ( 1 ... ( ( 𝑁  +  1 )  +  1 ) ) ) | 
						
							| 31 |  | oveq2 | ⊢ ( ( ♯ ‘ 𝑊 )  =  ( ( 𝑁  +  1 )  +  1 )  →  ( 1 ... ( ♯ ‘ 𝑊 ) )  =  ( 1 ... ( ( 𝑁  +  1 )  +  1 ) ) ) | 
						
							| 32 | 31 | eleq2d | ⊢ ( ( ♯ ‘ 𝑊 )  =  ( ( 𝑁  +  1 )  +  1 )  →  ( ( 𝑁  +  1 )  ∈  ( 1 ... ( ♯ ‘ 𝑊 ) )  ↔  ( 𝑁  +  1 )  ∈  ( 1 ... ( ( 𝑁  +  1 )  +  1 ) ) ) ) | 
						
							| 33 | 32 | adantl | ⊢ ( ( 𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑊 )  =  ( ( 𝑁  +  1 )  +  1 ) )  →  ( ( 𝑁  +  1 )  ∈  ( 1 ... ( ♯ ‘ 𝑊 ) )  ↔  ( 𝑁  +  1 )  ∈  ( 1 ... ( ( 𝑁  +  1 )  +  1 ) ) ) ) | 
						
							| 34 | 33 | adantl | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( 𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑊 )  =  ( ( 𝑁  +  1 )  +  1 ) ) )  →  ( ( 𝑁  +  1 )  ∈  ( 1 ... ( ♯ ‘ 𝑊 ) )  ↔  ( 𝑁  +  1 )  ∈  ( 1 ... ( ( 𝑁  +  1 )  +  1 ) ) ) ) | 
						
							| 35 | 30 34 | mpbird | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( 𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑊 )  =  ( ( 𝑁  +  1 )  +  1 ) ) )  →  ( 𝑁  +  1 )  ∈  ( 1 ... ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 36 | 5 35 | jca | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( 𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑊 )  =  ( ( 𝑁  +  1 )  +  1 ) ) )  →  ( 𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( 𝑁  +  1 )  ∈  ( 1 ... ( ♯ ‘ 𝑊 ) ) ) ) | 
						
							| 37 | 36 | 3adantr3 | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( 𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑊 )  =  ( ( 𝑁  +  1 )  +  1 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( 𝑁  +  1 ) ) { ( 𝑊 ‘ 𝑖 ) ,  ( 𝑊 ‘ ( 𝑖  +  1 ) ) }  ∈  𝐸 ) )  →  ( 𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( 𝑁  +  1 )  ∈  ( 1 ... ( ♯ ‘ 𝑊 ) ) ) ) | 
						
							| 38 |  | pfxfvlsw | ⊢ ( ( 𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( 𝑁  +  1 )  ∈  ( 1 ... ( ♯ ‘ 𝑊 ) ) )  →  ( lastS ‘ ( 𝑊  prefix  ( 𝑁  +  1 ) ) )  =  ( 𝑊 ‘ ( ( 𝑁  +  1 )  −  1 ) ) ) | 
						
							| 39 | 37 38 | syl | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( 𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑊 )  =  ( ( 𝑁  +  1 )  +  1 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( 𝑁  +  1 ) ) { ( 𝑊 ‘ 𝑖 ) ,  ( 𝑊 ‘ ( 𝑖  +  1 ) ) }  ∈  𝐸 ) )  →  ( lastS ‘ ( 𝑊  prefix  ( 𝑁  +  1 ) ) )  =  ( 𝑊 ‘ ( ( 𝑁  +  1 )  −  1 ) ) ) | 
						
							| 40 |  | lsw | ⊢ ( 𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  →  ( lastS ‘ 𝑊 )  =  ( 𝑊 ‘ ( ( ♯ ‘ 𝑊 )  −  1 ) ) ) | 
						
							| 41 | 40 | 3ad2ant1 | ⊢ ( ( 𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑊 )  =  ( ( 𝑁  +  1 )  +  1 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( 𝑁  +  1 ) ) { ( 𝑊 ‘ 𝑖 ) ,  ( 𝑊 ‘ ( 𝑖  +  1 ) ) }  ∈  𝐸 )  →  ( lastS ‘ 𝑊 )  =  ( 𝑊 ‘ ( ( ♯ ‘ 𝑊 )  −  1 ) ) ) | 
						
							| 42 | 41 | adantl | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( 𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑊 )  =  ( ( 𝑁  +  1 )  +  1 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( 𝑁  +  1 ) ) { ( 𝑊 ‘ 𝑖 ) ,  ( 𝑊 ‘ ( 𝑖  +  1 ) ) }  ∈  𝐸 ) )  →  ( lastS ‘ 𝑊 )  =  ( 𝑊 ‘ ( ( ♯ ‘ 𝑊 )  −  1 ) ) ) | 
						
							| 43 | 39 42 | preq12d | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( 𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑊 )  =  ( ( 𝑁  +  1 )  +  1 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( 𝑁  +  1 ) ) { ( 𝑊 ‘ 𝑖 ) ,  ( 𝑊 ‘ ( 𝑖  +  1 ) ) }  ∈  𝐸 ) )  →  { ( lastS ‘ ( 𝑊  prefix  ( 𝑁  +  1 ) ) ) ,  ( lastS ‘ 𝑊 ) }  =  { ( 𝑊 ‘ ( ( 𝑁  +  1 )  −  1 ) ) ,  ( 𝑊 ‘ ( ( ♯ ‘ 𝑊 )  −  1 ) ) } ) | 
						
							| 44 |  | oveq1 | ⊢ ( ( ♯ ‘ 𝑊 )  =  ( ( 𝑁  +  1 )  +  1 )  →  ( ( ♯ ‘ 𝑊 )  −  1 )  =  ( ( ( 𝑁  +  1 )  +  1 )  −  1 ) ) | 
						
							| 45 | 44 | 3ad2ant2 | ⊢ ( ( 𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑊 )  =  ( ( 𝑁  +  1 )  +  1 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( 𝑁  +  1 ) ) { ( 𝑊 ‘ 𝑖 ) ,  ( 𝑊 ‘ ( 𝑖  +  1 ) ) }  ∈  𝐸 )  →  ( ( ♯ ‘ 𝑊 )  −  1 )  =  ( ( ( 𝑁  +  1 )  +  1 )  −  1 ) ) | 
						
							| 46 | 45 | adantl | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( 𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑊 )  =  ( ( 𝑁  +  1 )  +  1 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( 𝑁  +  1 ) ) { ( 𝑊 ‘ 𝑖 ) ,  ( 𝑊 ‘ ( 𝑖  +  1 ) ) }  ∈  𝐸 ) )  →  ( ( ♯ ‘ 𝑊 )  −  1 )  =  ( ( ( 𝑁  +  1 )  +  1 )  −  1 ) ) | 
						
							| 47 | 46 | fveq2d | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( 𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑊 )  =  ( ( 𝑁  +  1 )  +  1 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( 𝑁  +  1 ) ) { ( 𝑊 ‘ 𝑖 ) ,  ( 𝑊 ‘ ( 𝑖  +  1 ) ) }  ∈  𝐸 ) )  →  ( 𝑊 ‘ ( ( ♯ ‘ 𝑊 )  −  1 ) )  =  ( 𝑊 ‘ ( ( ( 𝑁  +  1 )  +  1 )  −  1 ) ) ) | 
						
							| 48 | 47 | preq2d | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( 𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑊 )  =  ( ( 𝑁  +  1 )  +  1 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( 𝑁  +  1 ) ) { ( 𝑊 ‘ 𝑖 ) ,  ( 𝑊 ‘ ( 𝑖  +  1 ) ) }  ∈  𝐸 ) )  →  { ( 𝑊 ‘ ( ( 𝑁  +  1 )  −  1 ) ) ,  ( 𝑊 ‘ ( ( ♯ ‘ 𝑊 )  −  1 ) ) }  =  { ( 𝑊 ‘ ( ( 𝑁  +  1 )  −  1 ) ) ,  ( 𝑊 ‘ ( ( ( 𝑁  +  1 )  +  1 )  −  1 ) ) } ) | 
						
							| 49 |  | nn0cn | ⊢ ( 𝑁  ∈  ℕ0  →  𝑁  ∈  ℂ ) | 
						
							| 50 |  | 1cnd | ⊢ ( 𝑁  ∈  ℕ0  →  1  ∈  ℂ ) | 
						
							| 51 | 49 50 | pncand | ⊢ ( 𝑁  ∈  ℕ0  →  ( ( 𝑁  +  1 )  −  1 )  =  𝑁 ) | 
						
							| 52 | 51 | fveq2d | ⊢ ( 𝑁  ∈  ℕ0  →  ( 𝑊 ‘ ( ( 𝑁  +  1 )  −  1 ) )  =  ( 𝑊 ‘ 𝑁 ) ) | 
						
							| 53 | 6 | nn0cnd | ⊢ ( 𝑁  ∈  ℕ0  →  ( 𝑁  +  1 )  ∈  ℂ ) | 
						
							| 54 | 53 50 | pncand | ⊢ ( 𝑁  ∈  ℕ0  →  ( ( ( 𝑁  +  1 )  +  1 )  −  1 )  =  ( 𝑁  +  1 ) ) | 
						
							| 55 | 54 | fveq2d | ⊢ ( 𝑁  ∈  ℕ0  →  ( 𝑊 ‘ ( ( ( 𝑁  +  1 )  +  1 )  −  1 ) )  =  ( 𝑊 ‘ ( 𝑁  +  1 ) ) ) | 
						
							| 56 | 52 55 | preq12d | ⊢ ( 𝑁  ∈  ℕ0  →  { ( 𝑊 ‘ ( ( 𝑁  +  1 )  −  1 ) ) ,  ( 𝑊 ‘ ( ( ( 𝑁  +  1 )  +  1 )  −  1 ) ) }  =  { ( 𝑊 ‘ 𝑁 ) ,  ( 𝑊 ‘ ( 𝑁  +  1 ) ) } ) | 
						
							| 57 | 56 | adantr | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( 𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑊 )  =  ( ( 𝑁  +  1 )  +  1 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( 𝑁  +  1 ) ) { ( 𝑊 ‘ 𝑖 ) ,  ( 𝑊 ‘ ( 𝑖  +  1 ) ) }  ∈  𝐸 ) )  →  { ( 𝑊 ‘ ( ( 𝑁  +  1 )  −  1 ) ) ,  ( 𝑊 ‘ ( ( ( 𝑁  +  1 )  +  1 )  −  1 ) ) }  =  { ( 𝑊 ‘ 𝑁 ) ,  ( 𝑊 ‘ ( 𝑁  +  1 ) ) } ) | 
						
							| 58 | 48 57 | eqtrd | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( 𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑊 )  =  ( ( 𝑁  +  1 )  +  1 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( 𝑁  +  1 ) ) { ( 𝑊 ‘ 𝑖 ) ,  ( 𝑊 ‘ ( 𝑖  +  1 ) ) }  ∈  𝐸 ) )  →  { ( 𝑊 ‘ ( ( 𝑁  +  1 )  −  1 ) ) ,  ( 𝑊 ‘ ( ( ♯ ‘ 𝑊 )  −  1 ) ) }  =  { ( 𝑊 ‘ 𝑁 ) ,  ( 𝑊 ‘ ( 𝑁  +  1 ) ) } ) | 
						
							| 59 |  | fveq2 | ⊢ ( 𝑖  =  𝑁  →  ( 𝑊 ‘ 𝑖 )  =  ( 𝑊 ‘ 𝑁 ) ) | 
						
							| 60 |  | fvoveq1 | ⊢ ( 𝑖  =  𝑁  →  ( 𝑊 ‘ ( 𝑖  +  1 ) )  =  ( 𝑊 ‘ ( 𝑁  +  1 ) ) ) | 
						
							| 61 | 59 60 | preq12d | ⊢ ( 𝑖  =  𝑁  →  { ( 𝑊 ‘ 𝑖 ) ,  ( 𝑊 ‘ ( 𝑖  +  1 ) ) }  =  { ( 𝑊 ‘ 𝑁 ) ,  ( 𝑊 ‘ ( 𝑁  +  1 ) ) } ) | 
						
							| 62 | 61 | eleq1d | ⊢ ( 𝑖  =  𝑁  →  ( { ( 𝑊 ‘ 𝑖 ) ,  ( 𝑊 ‘ ( 𝑖  +  1 ) ) }  ∈  𝐸  ↔  { ( 𝑊 ‘ 𝑁 ) ,  ( 𝑊 ‘ ( 𝑁  +  1 ) ) }  ∈  𝐸 ) ) | 
						
							| 63 | 62 | rspcv | ⊢ ( 𝑁  ∈  ( 0 ..^ ( 𝑁  +  1 ) )  →  ( ∀ 𝑖  ∈  ( 0 ..^ ( 𝑁  +  1 ) ) { ( 𝑊 ‘ 𝑖 ) ,  ( 𝑊 ‘ ( 𝑖  +  1 ) ) }  ∈  𝐸  →  { ( 𝑊 ‘ 𝑁 ) ,  ( 𝑊 ‘ ( 𝑁  +  1 ) ) }  ∈  𝐸 ) ) | 
						
							| 64 |  | fzonn0p1 | ⊢ ( 𝑁  ∈  ℕ0  →  𝑁  ∈  ( 0 ..^ ( 𝑁  +  1 ) ) ) | 
						
							| 65 | 63 64 | syl11 | ⊢ ( ∀ 𝑖  ∈  ( 0 ..^ ( 𝑁  +  1 ) ) { ( 𝑊 ‘ 𝑖 ) ,  ( 𝑊 ‘ ( 𝑖  +  1 ) ) }  ∈  𝐸  →  ( 𝑁  ∈  ℕ0  →  { ( 𝑊 ‘ 𝑁 ) ,  ( 𝑊 ‘ ( 𝑁  +  1 ) ) }  ∈  𝐸 ) ) | 
						
							| 66 | 65 | 3ad2ant3 | ⊢ ( ( 𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑊 )  =  ( ( 𝑁  +  1 )  +  1 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( 𝑁  +  1 ) ) { ( 𝑊 ‘ 𝑖 ) ,  ( 𝑊 ‘ ( 𝑖  +  1 ) ) }  ∈  𝐸 )  →  ( 𝑁  ∈  ℕ0  →  { ( 𝑊 ‘ 𝑁 ) ,  ( 𝑊 ‘ ( 𝑁  +  1 ) ) }  ∈  𝐸 ) ) | 
						
							| 67 | 66 | impcom | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( 𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑊 )  =  ( ( 𝑁  +  1 )  +  1 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( 𝑁  +  1 ) ) { ( 𝑊 ‘ 𝑖 ) ,  ( 𝑊 ‘ ( 𝑖  +  1 ) ) }  ∈  𝐸 ) )  →  { ( 𝑊 ‘ 𝑁 ) ,  ( 𝑊 ‘ ( 𝑁  +  1 ) ) }  ∈  𝐸 ) | 
						
							| 68 | 58 67 | eqeltrd | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( 𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑊 )  =  ( ( 𝑁  +  1 )  +  1 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( 𝑁  +  1 ) ) { ( 𝑊 ‘ 𝑖 ) ,  ( 𝑊 ‘ ( 𝑖  +  1 ) ) }  ∈  𝐸 ) )  →  { ( 𝑊 ‘ ( ( 𝑁  +  1 )  −  1 ) ) ,  ( 𝑊 ‘ ( ( ♯ ‘ 𝑊 )  −  1 ) ) }  ∈  𝐸 ) | 
						
							| 69 | 43 68 | eqeltrd | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( 𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑊 )  =  ( ( 𝑁  +  1 )  +  1 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( 𝑁  +  1 ) ) { ( 𝑊 ‘ 𝑖 ) ,  ( 𝑊 ‘ ( 𝑖  +  1 ) ) }  ∈  𝐸 ) )  →  { ( lastS ‘ ( 𝑊  prefix  ( 𝑁  +  1 ) ) ) ,  ( lastS ‘ 𝑊 ) }  ∈  𝐸 ) | 
						
							| 70 | 4 69 | sylan2 | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝑊  ∈  ( ( 𝑁  +  1 )  WWalksN  𝐺 ) )  →  { ( lastS ‘ ( 𝑊  prefix  ( 𝑁  +  1 ) ) ) ,  ( lastS ‘ 𝑊 ) }  ∈  𝐸 ) | 
						
							| 71 |  | wwlksnred | ⊢ ( 𝑁  ∈  ℕ0  →  ( 𝑊  ∈  ( ( 𝑁  +  1 )  WWalksN  𝐺 )  →  ( 𝑊  prefix  ( 𝑁  +  1 ) )  ∈  ( 𝑁  WWalksN  𝐺 ) ) ) | 
						
							| 72 | 71 | imp | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝑊  ∈  ( ( 𝑁  +  1 )  WWalksN  𝐺 ) )  →  ( 𝑊  prefix  ( 𝑁  +  1 ) )  ∈  ( 𝑁  WWalksN  𝐺 ) ) | 
						
							| 73 |  | eqeq2 | ⊢ ( 𝑦  =  ( 𝑊  prefix  ( 𝑁  +  1 ) )  →  ( ( 𝑊  prefix  ( 𝑁  +  1 ) )  =  𝑦  ↔  ( 𝑊  prefix  ( 𝑁  +  1 ) )  =  ( 𝑊  prefix  ( 𝑁  +  1 ) ) ) ) | 
						
							| 74 |  | fveq2 | ⊢ ( 𝑦  =  ( 𝑊  prefix  ( 𝑁  +  1 ) )  →  ( lastS ‘ 𝑦 )  =  ( lastS ‘ ( 𝑊  prefix  ( 𝑁  +  1 ) ) ) ) | 
						
							| 75 | 74 | preq1d | ⊢ ( 𝑦  =  ( 𝑊  prefix  ( 𝑁  +  1 ) )  →  { ( lastS ‘ 𝑦 ) ,  ( lastS ‘ 𝑊 ) }  =  { ( lastS ‘ ( 𝑊  prefix  ( 𝑁  +  1 ) ) ) ,  ( lastS ‘ 𝑊 ) } ) | 
						
							| 76 | 75 | eleq1d | ⊢ ( 𝑦  =  ( 𝑊  prefix  ( 𝑁  +  1 ) )  →  ( { ( lastS ‘ 𝑦 ) ,  ( lastS ‘ 𝑊 ) }  ∈  𝐸  ↔  { ( lastS ‘ ( 𝑊  prefix  ( 𝑁  +  1 ) ) ) ,  ( lastS ‘ 𝑊 ) }  ∈  𝐸 ) ) | 
						
							| 77 | 73 76 | anbi12d | ⊢ ( 𝑦  =  ( 𝑊  prefix  ( 𝑁  +  1 ) )  →  ( ( ( 𝑊  prefix  ( 𝑁  +  1 ) )  =  𝑦  ∧  { ( lastS ‘ 𝑦 ) ,  ( lastS ‘ 𝑊 ) }  ∈  𝐸 )  ↔  ( ( 𝑊  prefix  ( 𝑁  +  1 ) )  =  ( 𝑊  prefix  ( 𝑁  +  1 ) )  ∧  { ( lastS ‘ ( 𝑊  prefix  ( 𝑁  +  1 ) ) ) ,  ( lastS ‘ 𝑊 ) }  ∈  𝐸 ) ) ) | 
						
							| 78 | 77 | adantl | ⊢ ( ( ( 𝑁  ∈  ℕ0  ∧  𝑊  ∈  ( ( 𝑁  +  1 )  WWalksN  𝐺 ) )  ∧  𝑦  =  ( 𝑊  prefix  ( 𝑁  +  1 ) ) )  →  ( ( ( 𝑊  prefix  ( 𝑁  +  1 ) )  =  𝑦  ∧  { ( lastS ‘ 𝑦 ) ,  ( lastS ‘ 𝑊 ) }  ∈  𝐸 )  ↔  ( ( 𝑊  prefix  ( 𝑁  +  1 ) )  =  ( 𝑊  prefix  ( 𝑁  +  1 ) )  ∧  { ( lastS ‘ ( 𝑊  prefix  ( 𝑁  +  1 ) ) ) ,  ( lastS ‘ 𝑊 ) }  ∈  𝐸 ) ) ) | 
						
							| 79 | 72 78 | rspcedv | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝑊  ∈  ( ( 𝑁  +  1 )  WWalksN  𝐺 ) )  →  ( ( ( 𝑊  prefix  ( 𝑁  +  1 ) )  =  ( 𝑊  prefix  ( 𝑁  +  1 ) )  ∧  { ( lastS ‘ ( 𝑊  prefix  ( 𝑁  +  1 ) ) ) ,  ( lastS ‘ 𝑊 ) }  ∈  𝐸 )  →  ∃ 𝑦  ∈  ( 𝑁  WWalksN  𝐺 ) ( ( 𝑊  prefix  ( 𝑁  +  1 ) )  =  𝑦  ∧  { ( lastS ‘ 𝑦 ) ,  ( lastS ‘ 𝑊 ) }  ∈  𝐸 ) ) ) | 
						
							| 80 | 2 70 79 | mp2and | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝑊  ∈  ( ( 𝑁  +  1 )  WWalksN  𝐺 ) )  →  ∃ 𝑦  ∈  ( 𝑁  WWalksN  𝐺 ) ( ( 𝑊  prefix  ( 𝑁  +  1 ) )  =  𝑦  ∧  { ( lastS ‘ 𝑦 ) ,  ( lastS ‘ 𝑊 ) }  ∈  𝐸 ) ) | 
						
							| 81 | 80 | ex | ⊢ ( 𝑁  ∈  ℕ0  →  ( 𝑊  ∈  ( ( 𝑁  +  1 )  WWalksN  𝐺 )  →  ∃ 𝑦  ∈  ( 𝑁  WWalksN  𝐺 ) ( ( 𝑊  prefix  ( 𝑁  +  1 ) )  =  𝑦  ∧  { ( lastS ‘ 𝑦 ) ,  ( lastS ‘ 𝑊 ) }  ∈  𝐸 ) ) ) |