| Step | Hyp | Ref | Expression | 
						
							| 1 |  | wwlksnredwwlkn.e |  |-  E = ( Edg ` G ) | 
						
							| 2 |  | eqidd |  |-  ( ( N e. NN0 /\ W e. ( ( N + 1 ) WWalksN G ) ) -> ( W prefix ( N + 1 ) ) = ( W prefix ( N + 1 ) ) ) | 
						
							| 3 |  | eqid |  |-  ( Vtx ` G ) = ( Vtx ` G ) | 
						
							| 4 | 3 1 | wwlknp |  |-  ( W e. ( ( N + 1 ) WWalksN G ) -> ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( ( N + 1 ) + 1 ) /\ A. i e. ( 0 ..^ ( N + 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. E ) ) | 
						
							| 5 |  | simprl |  |-  ( ( N e. NN0 /\ ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( ( N + 1 ) + 1 ) ) ) -> W e. Word ( Vtx ` G ) ) | 
						
							| 6 |  | peano2nn0 |  |-  ( N e. NN0 -> ( N + 1 ) e. NN0 ) | 
						
							| 7 |  | peano2nn0 |  |-  ( ( N + 1 ) e. NN0 -> ( ( N + 1 ) + 1 ) e. NN0 ) | 
						
							| 8 | 6 7 | syl |  |-  ( N e. NN0 -> ( ( N + 1 ) + 1 ) e. NN0 ) | 
						
							| 9 |  | id |  |-  ( N e. NN0 -> N e. NN0 ) | 
						
							| 10 |  | nn0p1nn |  |-  ( ( N + 1 ) e. NN0 -> ( ( N + 1 ) + 1 ) e. NN ) | 
						
							| 11 | 6 10 | syl |  |-  ( N e. NN0 -> ( ( N + 1 ) + 1 ) e. NN ) | 
						
							| 12 |  | nn0re |  |-  ( N e. NN0 -> N e. RR ) | 
						
							| 13 |  | id |  |-  ( N e. RR -> N e. RR ) | 
						
							| 14 |  | peano2re |  |-  ( N e. RR -> ( N + 1 ) e. RR ) | 
						
							| 15 |  | peano2re |  |-  ( ( N + 1 ) e. RR -> ( ( N + 1 ) + 1 ) e. RR ) | 
						
							| 16 | 14 15 | syl |  |-  ( N e. RR -> ( ( N + 1 ) + 1 ) e. RR ) | 
						
							| 17 | 13 14 16 | 3jca |  |-  ( N e. RR -> ( N e. RR /\ ( N + 1 ) e. RR /\ ( ( N + 1 ) + 1 ) e. RR ) ) | 
						
							| 18 | 12 17 | syl |  |-  ( N e. NN0 -> ( N e. RR /\ ( N + 1 ) e. RR /\ ( ( N + 1 ) + 1 ) e. RR ) ) | 
						
							| 19 | 12 | ltp1d |  |-  ( N e. NN0 -> N < ( N + 1 ) ) | 
						
							| 20 |  | nn0re |  |-  ( ( N + 1 ) e. NN0 -> ( N + 1 ) e. RR ) | 
						
							| 21 | 6 20 | syl |  |-  ( N e. NN0 -> ( N + 1 ) e. RR ) | 
						
							| 22 | 21 | ltp1d |  |-  ( N e. NN0 -> ( N + 1 ) < ( ( N + 1 ) + 1 ) ) | 
						
							| 23 |  | lttr |  |-  ( ( N e. RR /\ ( N + 1 ) e. RR /\ ( ( N + 1 ) + 1 ) e. RR ) -> ( ( N < ( N + 1 ) /\ ( N + 1 ) < ( ( N + 1 ) + 1 ) ) -> N < ( ( N + 1 ) + 1 ) ) ) | 
						
							| 24 | 23 | imp |  |-  ( ( ( N e. RR /\ ( N + 1 ) e. RR /\ ( ( N + 1 ) + 1 ) e. RR ) /\ ( N < ( N + 1 ) /\ ( N + 1 ) < ( ( N + 1 ) + 1 ) ) ) -> N < ( ( N + 1 ) + 1 ) ) | 
						
							| 25 | 18 19 22 24 | syl12anc |  |-  ( N e. NN0 -> N < ( ( N + 1 ) + 1 ) ) | 
						
							| 26 |  | elfzo0 |  |-  ( N e. ( 0 ..^ ( ( N + 1 ) + 1 ) ) <-> ( N e. NN0 /\ ( ( N + 1 ) + 1 ) e. NN /\ N < ( ( N + 1 ) + 1 ) ) ) | 
						
							| 27 | 9 11 25 26 | syl3anbrc |  |-  ( N e. NN0 -> N e. ( 0 ..^ ( ( N + 1 ) + 1 ) ) ) | 
						
							| 28 |  | fz0add1fz1 |  |-  ( ( ( ( N + 1 ) + 1 ) e. NN0 /\ N e. ( 0 ..^ ( ( N + 1 ) + 1 ) ) ) -> ( N + 1 ) e. ( 1 ... ( ( N + 1 ) + 1 ) ) ) | 
						
							| 29 | 8 27 28 | syl2anc |  |-  ( N e. NN0 -> ( N + 1 ) e. ( 1 ... ( ( N + 1 ) + 1 ) ) ) | 
						
							| 30 | 29 | adantr |  |-  ( ( N e. NN0 /\ ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( ( N + 1 ) + 1 ) ) ) -> ( N + 1 ) e. ( 1 ... ( ( N + 1 ) + 1 ) ) ) | 
						
							| 31 |  | oveq2 |  |-  ( ( # ` W ) = ( ( N + 1 ) + 1 ) -> ( 1 ... ( # ` W ) ) = ( 1 ... ( ( N + 1 ) + 1 ) ) ) | 
						
							| 32 | 31 | eleq2d |  |-  ( ( # ` W ) = ( ( N + 1 ) + 1 ) -> ( ( N + 1 ) e. ( 1 ... ( # ` W ) ) <-> ( N + 1 ) e. ( 1 ... ( ( N + 1 ) + 1 ) ) ) ) | 
						
							| 33 | 32 | adantl |  |-  ( ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( ( N + 1 ) + 1 ) ) -> ( ( N + 1 ) e. ( 1 ... ( # ` W ) ) <-> ( N + 1 ) e. ( 1 ... ( ( N + 1 ) + 1 ) ) ) ) | 
						
							| 34 | 33 | adantl |  |-  ( ( N e. NN0 /\ ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( ( N + 1 ) + 1 ) ) ) -> ( ( N + 1 ) e. ( 1 ... ( # ` W ) ) <-> ( N + 1 ) e. ( 1 ... ( ( N + 1 ) + 1 ) ) ) ) | 
						
							| 35 | 30 34 | mpbird |  |-  ( ( N e. NN0 /\ ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( ( N + 1 ) + 1 ) ) ) -> ( N + 1 ) e. ( 1 ... ( # ` W ) ) ) | 
						
							| 36 | 5 35 | jca |  |-  ( ( N e. NN0 /\ ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( ( N + 1 ) + 1 ) ) ) -> ( W e. Word ( Vtx ` G ) /\ ( N + 1 ) e. ( 1 ... ( # ` W ) ) ) ) | 
						
							| 37 | 36 | 3adantr3 |  |-  ( ( N e. NN0 /\ ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( ( N + 1 ) + 1 ) /\ A. i e. ( 0 ..^ ( N + 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. E ) ) -> ( W e. Word ( Vtx ` G ) /\ ( N + 1 ) e. ( 1 ... ( # ` W ) ) ) ) | 
						
							| 38 |  | pfxfvlsw |  |-  ( ( W e. Word ( Vtx ` G ) /\ ( N + 1 ) e. ( 1 ... ( # ` W ) ) ) -> ( lastS ` ( W prefix ( N + 1 ) ) ) = ( W ` ( ( N + 1 ) - 1 ) ) ) | 
						
							| 39 | 37 38 | syl |  |-  ( ( N e. NN0 /\ ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( ( N + 1 ) + 1 ) /\ A. i e. ( 0 ..^ ( N + 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. E ) ) -> ( lastS ` ( W prefix ( N + 1 ) ) ) = ( W ` ( ( N + 1 ) - 1 ) ) ) | 
						
							| 40 |  | lsw |  |-  ( W e. Word ( Vtx ` G ) -> ( lastS ` W ) = ( W ` ( ( # ` W ) - 1 ) ) ) | 
						
							| 41 | 40 | 3ad2ant1 |  |-  ( ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( ( N + 1 ) + 1 ) /\ A. i e. ( 0 ..^ ( N + 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. E ) -> ( lastS ` W ) = ( W ` ( ( # ` W ) - 1 ) ) ) | 
						
							| 42 | 41 | adantl |  |-  ( ( N e. NN0 /\ ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( ( N + 1 ) + 1 ) /\ A. i e. ( 0 ..^ ( N + 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. E ) ) -> ( lastS ` W ) = ( W ` ( ( # ` W ) - 1 ) ) ) | 
						
							| 43 | 39 42 | preq12d |  |-  ( ( N e. NN0 /\ ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( ( N + 1 ) + 1 ) /\ A. i e. ( 0 ..^ ( N + 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. E ) ) -> { ( lastS ` ( W prefix ( N + 1 ) ) ) , ( lastS ` W ) } = { ( W ` ( ( N + 1 ) - 1 ) ) , ( W ` ( ( # ` W ) - 1 ) ) } ) | 
						
							| 44 |  | oveq1 |  |-  ( ( # ` W ) = ( ( N + 1 ) + 1 ) -> ( ( # ` W ) - 1 ) = ( ( ( N + 1 ) + 1 ) - 1 ) ) | 
						
							| 45 | 44 | 3ad2ant2 |  |-  ( ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( ( N + 1 ) + 1 ) /\ A. i e. ( 0 ..^ ( N + 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. E ) -> ( ( # ` W ) - 1 ) = ( ( ( N + 1 ) + 1 ) - 1 ) ) | 
						
							| 46 | 45 | adantl |  |-  ( ( N e. NN0 /\ ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( ( N + 1 ) + 1 ) /\ A. i e. ( 0 ..^ ( N + 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. E ) ) -> ( ( # ` W ) - 1 ) = ( ( ( N + 1 ) + 1 ) - 1 ) ) | 
						
							| 47 | 46 | fveq2d |  |-  ( ( N e. NN0 /\ ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( ( N + 1 ) + 1 ) /\ A. i e. ( 0 ..^ ( N + 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. E ) ) -> ( W ` ( ( # ` W ) - 1 ) ) = ( W ` ( ( ( N + 1 ) + 1 ) - 1 ) ) ) | 
						
							| 48 | 47 | preq2d |  |-  ( ( N e. NN0 /\ ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( ( N + 1 ) + 1 ) /\ A. i e. ( 0 ..^ ( N + 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. E ) ) -> { ( W ` ( ( N + 1 ) - 1 ) ) , ( W ` ( ( # ` W ) - 1 ) ) } = { ( W ` ( ( N + 1 ) - 1 ) ) , ( W ` ( ( ( N + 1 ) + 1 ) - 1 ) ) } ) | 
						
							| 49 |  | nn0cn |  |-  ( N e. NN0 -> N e. CC ) | 
						
							| 50 |  | 1cnd |  |-  ( N e. NN0 -> 1 e. CC ) | 
						
							| 51 | 49 50 | pncand |  |-  ( N e. NN0 -> ( ( N + 1 ) - 1 ) = N ) | 
						
							| 52 | 51 | fveq2d |  |-  ( N e. NN0 -> ( W ` ( ( N + 1 ) - 1 ) ) = ( W ` N ) ) | 
						
							| 53 | 6 | nn0cnd |  |-  ( N e. NN0 -> ( N + 1 ) e. CC ) | 
						
							| 54 | 53 50 | pncand |  |-  ( N e. NN0 -> ( ( ( N + 1 ) + 1 ) - 1 ) = ( N + 1 ) ) | 
						
							| 55 | 54 | fveq2d |  |-  ( N e. NN0 -> ( W ` ( ( ( N + 1 ) + 1 ) - 1 ) ) = ( W ` ( N + 1 ) ) ) | 
						
							| 56 | 52 55 | preq12d |  |-  ( N e. NN0 -> { ( W ` ( ( N + 1 ) - 1 ) ) , ( W ` ( ( ( N + 1 ) + 1 ) - 1 ) ) } = { ( W ` N ) , ( W ` ( N + 1 ) ) } ) | 
						
							| 57 | 56 | adantr |  |-  ( ( N e. NN0 /\ ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( ( N + 1 ) + 1 ) /\ A. i e. ( 0 ..^ ( N + 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. E ) ) -> { ( W ` ( ( N + 1 ) - 1 ) ) , ( W ` ( ( ( N + 1 ) + 1 ) - 1 ) ) } = { ( W ` N ) , ( W ` ( N + 1 ) ) } ) | 
						
							| 58 | 48 57 | eqtrd |  |-  ( ( N e. NN0 /\ ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( ( N + 1 ) + 1 ) /\ A. i e. ( 0 ..^ ( N + 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. E ) ) -> { ( W ` ( ( N + 1 ) - 1 ) ) , ( W ` ( ( # ` W ) - 1 ) ) } = { ( W ` N ) , ( W ` ( N + 1 ) ) } ) | 
						
							| 59 |  | fveq2 |  |-  ( i = N -> ( W ` i ) = ( W ` N ) ) | 
						
							| 60 |  | fvoveq1 |  |-  ( i = N -> ( W ` ( i + 1 ) ) = ( W ` ( N + 1 ) ) ) | 
						
							| 61 | 59 60 | preq12d |  |-  ( i = N -> { ( W ` i ) , ( W ` ( i + 1 ) ) } = { ( W ` N ) , ( W ` ( N + 1 ) ) } ) | 
						
							| 62 | 61 | eleq1d |  |-  ( i = N -> ( { ( W ` i ) , ( W ` ( i + 1 ) ) } e. E <-> { ( W ` N ) , ( W ` ( N + 1 ) ) } e. E ) ) | 
						
							| 63 | 62 | rspcv |  |-  ( N e. ( 0 ..^ ( N + 1 ) ) -> ( A. i e. ( 0 ..^ ( N + 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. E -> { ( W ` N ) , ( W ` ( N + 1 ) ) } e. E ) ) | 
						
							| 64 |  | fzonn0p1 |  |-  ( N e. NN0 -> N e. ( 0 ..^ ( N + 1 ) ) ) | 
						
							| 65 | 63 64 | syl11 |  |-  ( A. i e. ( 0 ..^ ( N + 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. E -> ( N e. NN0 -> { ( W ` N ) , ( W ` ( N + 1 ) ) } e. E ) ) | 
						
							| 66 | 65 | 3ad2ant3 |  |-  ( ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( ( N + 1 ) + 1 ) /\ A. i e. ( 0 ..^ ( N + 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. E ) -> ( N e. NN0 -> { ( W ` N ) , ( W ` ( N + 1 ) ) } e. E ) ) | 
						
							| 67 | 66 | impcom |  |-  ( ( N e. NN0 /\ ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( ( N + 1 ) + 1 ) /\ A. i e. ( 0 ..^ ( N + 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. E ) ) -> { ( W ` N ) , ( W ` ( N + 1 ) ) } e. E ) | 
						
							| 68 | 58 67 | eqeltrd |  |-  ( ( N e. NN0 /\ ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( ( N + 1 ) + 1 ) /\ A. i e. ( 0 ..^ ( N + 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. E ) ) -> { ( W ` ( ( N + 1 ) - 1 ) ) , ( W ` ( ( # ` W ) - 1 ) ) } e. E ) | 
						
							| 69 | 43 68 | eqeltrd |  |-  ( ( N e. NN0 /\ ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( ( N + 1 ) + 1 ) /\ A. i e. ( 0 ..^ ( N + 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. E ) ) -> { ( lastS ` ( W prefix ( N + 1 ) ) ) , ( lastS ` W ) } e. E ) | 
						
							| 70 | 4 69 | sylan2 |  |-  ( ( N e. NN0 /\ W e. ( ( N + 1 ) WWalksN G ) ) -> { ( lastS ` ( W prefix ( N + 1 ) ) ) , ( lastS ` W ) } e. E ) | 
						
							| 71 |  | wwlksnred |  |-  ( N e. NN0 -> ( W e. ( ( N + 1 ) WWalksN G ) -> ( W prefix ( N + 1 ) ) e. ( N WWalksN G ) ) ) | 
						
							| 72 | 71 | imp |  |-  ( ( N e. NN0 /\ W e. ( ( N + 1 ) WWalksN G ) ) -> ( W prefix ( N + 1 ) ) e. ( N WWalksN G ) ) | 
						
							| 73 |  | eqeq2 |  |-  ( y = ( W prefix ( N + 1 ) ) -> ( ( W prefix ( N + 1 ) ) = y <-> ( W prefix ( N + 1 ) ) = ( W prefix ( N + 1 ) ) ) ) | 
						
							| 74 |  | fveq2 |  |-  ( y = ( W prefix ( N + 1 ) ) -> ( lastS ` y ) = ( lastS ` ( W prefix ( N + 1 ) ) ) ) | 
						
							| 75 | 74 | preq1d |  |-  ( y = ( W prefix ( N + 1 ) ) -> { ( lastS ` y ) , ( lastS ` W ) } = { ( lastS ` ( W prefix ( N + 1 ) ) ) , ( lastS ` W ) } ) | 
						
							| 76 | 75 | eleq1d |  |-  ( y = ( W prefix ( N + 1 ) ) -> ( { ( lastS ` y ) , ( lastS ` W ) } e. E <-> { ( lastS ` ( W prefix ( N + 1 ) ) ) , ( lastS ` W ) } e. E ) ) | 
						
							| 77 | 73 76 | anbi12d |  |-  ( y = ( W prefix ( N + 1 ) ) -> ( ( ( W prefix ( N + 1 ) ) = y /\ { ( lastS ` y ) , ( lastS ` W ) } e. E ) <-> ( ( W prefix ( N + 1 ) ) = ( W prefix ( N + 1 ) ) /\ { ( lastS ` ( W prefix ( N + 1 ) ) ) , ( lastS ` W ) } e. E ) ) ) | 
						
							| 78 | 77 | adantl |  |-  ( ( ( N e. NN0 /\ W e. ( ( N + 1 ) WWalksN G ) ) /\ y = ( W prefix ( N + 1 ) ) ) -> ( ( ( W prefix ( N + 1 ) ) = y /\ { ( lastS ` y ) , ( lastS ` W ) } e. E ) <-> ( ( W prefix ( N + 1 ) ) = ( W prefix ( N + 1 ) ) /\ { ( lastS ` ( W prefix ( N + 1 ) ) ) , ( lastS ` W ) } e. E ) ) ) | 
						
							| 79 | 72 78 | rspcedv |  |-  ( ( N e. NN0 /\ W e. ( ( N + 1 ) WWalksN G ) ) -> ( ( ( W prefix ( N + 1 ) ) = ( W prefix ( N + 1 ) ) /\ { ( lastS ` ( W prefix ( N + 1 ) ) ) , ( lastS ` W ) } e. E ) -> E. y e. ( N WWalksN G ) ( ( W prefix ( N + 1 ) ) = y /\ { ( lastS ` y ) , ( lastS ` W ) } e. E ) ) ) | 
						
							| 80 | 2 70 79 | mp2and |  |-  ( ( N e. NN0 /\ W e. ( ( N + 1 ) WWalksN G ) ) -> E. y e. ( N WWalksN G ) ( ( W prefix ( N + 1 ) ) = y /\ { ( lastS ` y ) , ( lastS ` W ) } e. E ) ) | 
						
							| 81 | 80 | ex |  |-  ( N e. NN0 -> ( W e. ( ( N + 1 ) WWalksN G ) -> E. y e. ( N WWalksN G ) ( ( W prefix ( N + 1 ) ) = y /\ { ( lastS ` y ) , ( lastS ` W ) } e. E ) ) ) |