| Step | Hyp | Ref | Expression | 
						
							| 1 |  | wwlksnredwwlkn.e |  |-  E = ( Edg ` G ) | 
						
							| 2 | 1 | wwlksnredwwlkn |  |-  ( N e. NN0 -> ( W e. ( ( N + 1 ) WWalksN G ) -> E. y e. ( N WWalksN G ) ( ( W prefix ( N + 1 ) ) = y /\ { ( lastS ` y ) , ( lastS ` W ) } e. E ) ) ) | 
						
							| 3 | 2 | imp |  |-  ( ( N e. NN0 /\ W e. ( ( N + 1 ) WWalksN G ) ) -> E. y e. ( N WWalksN G ) ( ( W prefix ( N + 1 ) ) = y /\ { ( lastS ` y ) , ( lastS ` W ) } e. E ) ) | 
						
							| 4 |  | simpl |  |-  ( ( ( W prefix ( N + 1 ) ) = y /\ { ( lastS ` y ) , ( lastS ` W ) } e. E ) -> ( W prefix ( N + 1 ) ) = y ) | 
						
							| 5 | 4 | adantl |  |-  ( ( ( ( ( W ` 0 ) = P /\ ( N e. NN0 /\ W e. ( ( N + 1 ) WWalksN G ) ) ) /\ y e. ( N WWalksN G ) ) /\ ( ( W prefix ( N + 1 ) ) = y /\ { ( lastS ` y ) , ( lastS ` W ) } e. E ) ) -> ( W prefix ( N + 1 ) ) = y ) | 
						
							| 6 |  | fveq1 |  |-  ( y = ( W prefix ( N + 1 ) ) -> ( y ` 0 ) = ( ( W prefix ( N + 1 ) ) ` 0 ) ) | 
						
							| 7 | 6 | eqcoms |  |-  ( ( W prefix ( N + 1 ) ) = y -> ( y ` 0 ) = ( ( W prefix ( N + 1 ) ) ` 0 ) ) | 
						
							| 8 | 7 | adantr |  |-  ( ( ( W prefix ( N + 1 ) ) = y /\ ( ( ( W ` 0 ) = P /\ ( N e. NN0 /\ W e. ( ( N + 1 ) WWalksN G ) ) ) /\ y e. ( N WWalksN G ) ) ) -> ( y ` 0 ) = ( ( W prefix ( N + 1 ) ) ` 0 ) ) | 
						
							| 9 |  | eqid |  |-  ( Vtx ` G ) = ( Vtx ` G ) | 
						
							| 10 | 9 1 | wwlknp |  |-  ( W e. ( ( N + 1 ) WWalksN G ) -> ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( ( N + 1 ) + 1 ) /\ A. i e. ( 0 ..^ ( N + 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. E ) ) | 
						
							| 11 |  | nn0p1nn |  |-  ( N e. NN0 -> ( N + 1 ) e. NN ) | 
						
							| 12 |  | peano2nn0 |  |-  ( N e. NN0 -> ( N + 1 ) e. NN0 ) | 
						
							| 13 |  | nn0re |  |-  ( ( N + 1 ) e. NN0 -> ( N + 1 ) e. RR ) | 
						
							| 14 |  | lep1 |  |-  ( ( N + 1 ) e. RR -> ( N + 1 ) <_ ( ( N + 1 ) + 1 ) ) | 
						
							| 15 | 12 13 14 | 3syl |  |-  ( N e. NN0 -> ( N + 1 ) <_ ( ( N + 1 ) + 1 ) ) | 
						
							| 16 |  | peano2nn0 |  |-  ( ( N + 1 ) e. NN0 -> ( ( N + 1 ) + 1 ) e. NN0 ) | 
						
							| 17 | 16 | nn0zd |  |-  ( ( N + 1 ) e. NN0 -> ( ( N + 1 ) + 1 ) e. ZZ ) | 
						
							| 18 |  | fznn |  |-  ( ( ( N + 1 ) + 1 ) e. ZZ -> ( ( N + 1 ) e. ( 1 ... ( ( N + 1 ) + 1 ) ) <-> ( ( N + 1 ) e. NN /\ ( N + 1 ) <_ ( ( N + 1 ) + 1 ) ) ) ) | 
						
							| 19 | 12 17 18 | 3syl |  |-  ( N e. NN0 -> ( ( N + 1 ) e. ( 1 ... ( ( N + 1 ) + 1 ) ) <-> ( ( N + 1 ) e. NN /\ ( N + 1 ) <_ ( ( N + 1 ) + 1 ) ) ) ) | 
						
							| 20 | 11 15 19 | mpbir2and |  |-  ( N e. NN0 -> ( N + 1 ) e. ( 1 ... ( ( N + 1 ) + 1 ) ) ) | 
						
							| 21 |  | oveq2 |  |-  ( ( # ` W ) = ( ( N + 1 ) + 1 ) -> ( 1 ... ( # ` W ) ) = ( 1 ... ( ( N + 1 ) + 1 ) ) ) | 
						
							| 22 | 21 | eleq2d |  |-  ( ( # ` W ) = ( ( N + 1 ) + 1 ) -> ( ( N + 1 ) e. ( 1 ... ( # ` W ) ) <-> ( N + 1 ) e. ( 1 ... ( ( N + 1 ) + 1 ) ) ) ) | 
						
							| 23 | 20 22 | imbitrrid |  |-  ( ( # ` W ) = ( ( N + 1 ) + 1 ) -> ( N e. NN0 -> ( N + 1 ) e. ( 1 ... ( # ` W ) ) ) ) | 
						
							| 24 | 23 | adantl |  |-  ( ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( ( N + 1 ) + 1 ) ) -> ( N e. NN0 -> ( N + 1 ) e. ( 1 ... ( # ` W ) ) ) ) | 
						
							| 25 |  | simpl |  |-  ( ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( ( N + 1 ) + 1 ) ) -> W e. Word ( Vtx ` G ) ) | 
						
							| 26 | 24 25 | jctild |  |-  ( ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( ( N + 1 ) + 1 ) ) -> ( N e. NN0 -> ( W e. Word ( Vtx ` G ) /\ ( N + 1 ) e. ( 1 ... ( # ` W ) ) ) ) ) | 
						
							| 27 | 26 | 3adant3 |  |-  ( ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( ( N + 1 ) + 1 ) /\ A. i e. ( 0 ..^ ( N + 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. E ) -> ( N e. NN0 -> ( W e. Word ( Vtx ` G ) /\ ( N + 1 ) e. ( 1 ... ( # ` W ) ) ) ) ) | 
						
							| 28 | 10 27 | syl |  |-  ( W e. ( ( N + 1 ) WWalksN G ) -> ( N e. NN0 -> ( W e. Word ( Vtx ` G ) /\ ( N + 1 ) e. ( 1 ... ( # ` W ) ) ) ) ) | 
						
							| 29 | 28 | impcom |  |-  ( ( N e. NN0 /\ W e. ( ( N + 1 ) WWalksN G ) ) -> ( W e. Word ( Vtx ` G ) /\ ( N + 1 ) e. ( 1 ... ( # ` W ) ) ) ) | 
						
							| 30 | 29 | adantl |  |-  ( ( ( W ` 0 ) = P /\ ( N e. NN0 /\ W e. ( ( N + 1 ) WWalksN G ) ) ) -> ( W e. Word ( Vtx ` G ) /\ ( N + 1 ) e. ( 1 ... ( # ` W ) ) ) ) | 
						
							| 31 | 30 | adantr |  |-  ( ( ( ( W ` 0 ) = P /\ ( N e. NN0 /\ W e. ( ( N + 1 ) WWalksN G ) ) ) /\ y e. ( N WWalksN G ) ) -> ( W e. Word ( Vtx ` G ) /\ ( N + 1 ) e. ( 1 ... ( # ` W ) ) ) ) | 
						
							| 32 | 31 | adantl |  |-  ( ( ( W prefix ( N + 1 ) ) = y /\ ( ( ( W ` 0 ) = P /\ ( N e. NN0 /\ W e. ( ( N + 1 ) WWalksN G ) ) ) /\ y e. ( N WWalksN G ) ) ) -> ( W e. Word ( Vtx ` G ) /\ ( N + 1 ) e. ( 1 ... ( # ` W ) ) ) ) | 
						
							| 33 |  | pfxfv0 |  |-  ( ( W e. Word ( Vtx ` G ) /\ ( N + 1 ) e. ( 1 ... ( # ` W ) ) ) -> ( ( W prefix ( N + 1 ) ) ` 0 ) = ( W ` 0 ) ) | 
						
							| 34 | 32 33 | syl |  |-  ( ( ( W prefix ( N + 1 ) ) = y /\ ( ( ( W ` 0 ) = P /\ ( N e. NN0 /\ W e. ( ( N + 1 ) WWalksN G ) ) ) /\ y e. ( N WWalksN G ) ) ) -> ( ( W prefix ( N + 1 ) ) ` 0 ) = ( W ` 0 ) ) | 
						
							| 35 |  | simprll |  |-  ( ( ( W prefix ( N + 1 ) ) = y /\ ( ( ( W ` 0 ) = P /\ ( N e. NN0 /\ W e. ( ( N + 1 ) WWalksN G ) ) ) /\ y e. ( N WWalksN G ) ) ) -> ( W ` 0 ) = P ) | 
						
							| 36 | 8 34 35 | 3eqtrd |  |-  ( ( ( W prefix ( N + 1 ) ) = y /\ ( ( ( W ` 0 ) = P /\ ( N e. NN0 /\ W e. ( ( N + 1 ) WWalksN G ) ) ) /\ y e. ( N WWalksN G ) ) ) -> ( y ` 0 ) = P ) | 
						
							| 37 | 36 | ex |  |-  ( ( W prefix ( N + 1 ) ) = y -> ( ( ( ( W ` 0 ) = P /\ ( N e. NN0 /\ W e. ( ( N + 1 ) WWalksN G ) ) ) /\ y e. ( N WWalksN G ) ) -> ( y ` 0 ) = P ) ) | 
						
							| 38 | 37 | adantr |  |-  ( ( ( W prefix ( N + 1 ) ) = y /\ { ( lastS ` y ) , ( lastS ` W ) } e. E ) -> ( ( ( ( W ` 0 ) = P /\ ( N e. NN0 /\ W e. ( ( N + 1 ) WWalksN G ) ) ) /\ y e. ( N WWalksN G ) ) -> ( y ` 0 ) = P ) ) | 
						
							| 39 | 38 | impcom |  |-  ( ( ( ( ( W ` 0 ) = P /\ ( N e. NN0 /\ W e. ( ( N + 1 ) WWalksN G ) ) ) /\ y e. ( N WWalksN G ) ) /\ ( ( W prefix ( N + 1 ) ) = y /\ { ( lastS ` y ) , ( lastS ` W ) } e. E ) ) -> ( y ` 0 ) = P ) | 
						
							| 40 |  | simpr |  |-  ( ( ( W prefix ( N + 1 ) ) = y /\ { ( lastS ` y ) , ( lastS ` W ) } e. E ) -> { ( lastS ` y ) , ( lastS ` W ) } e. E ) | 
						
							| 41 | 40 | adantl |  |-  ( ( ( ( ( W ` 0 ) = P /\ ( N e. NN0 /\ W e. ( ( N + 1 ) WWalksN G ) ) ) /\ y e. ( N WWalksN G ) ) /\ ( ( W prefix ( N + 1 ) ) = y /\ { ( lastS ` y ) , ( lastS ` W ) } e. E ) ) -> { ( lastS ` y ) , ( lastS ` W ) } e. E ) | 
						
							| 42 | 5 39 41 | 3jca |  |-  ( ( ( ( ( W ` 0 ) = P /\ ( N e. NN0 /\ W e. ( ( N + 1 ) WWalksN G ) ) ) /\ y e. ( N WWalksN G ) ) /\ ( ( W prefix ( N + 1 ) ) = y /\ { ( lastS ` y ) , ( lastS ` W ) } e. E ) ) -> ( ( W prefix ( N + 1 ) ) = y /\ ( y ` 0 ) = P /\ { ( lastS ` y ) , ( lastS ` W ) } e. E ) ) | 
						
							| 43 | 42 | ex |  |-  ( ( ( ( W ` 0 ) = P /\ ( N e. NN0 /\ W e. ( ( N + 1 ) WWalksN G ) ) ) /\ y e. ( N WWalksN G ) ) -> ( ( ( W prefix ( N + 1 ) ) = y /\ { ( lastS ` y ) , ( lastS ` W ) } e. E ) -> ( ( W prefix ( N + 1 ) ) = y /\ ( y ` 0 ) = P /\ { ( lastS ` y ) , ( lastS ` W ) } e. E ) ) ) | 
						
							| 44 | 43 | reximdva |  |-  ( ( ( W ` 0 ) = P /\ ( N e. NN0 /\ W e. ( ( N + 1 ) WWalksN G ) ) ) -> ( E. y e. ( N WWalksN G ) ( ( W prefix ( N + 1 ) ) = y /\ { ( lastS ` y ) , ( lastS ` W ) } e. E ) -> E. y e. ( N WWalksN G ) ( ( W prefix ( N + 1 ) ) = y /\ ( y ` 0 ) = P /\ { ( lastS ` y ) , ( lastS ` W ) } e. E ) ) ) | 
						
							| 45 | 44 | ex |  |-  ( ( W ` 0 ) = P -> ( ( N e. NN0 /\ W e. ( ( N + 1 ) WWalksN G ) ) -> ( E. y e. ( N WWalksN G ) ( ( W prefix ( N + 1 ) ) = y /\ { ( lastS ` y ) , ( lastS ` W ) } e. E ) -> E. y e. ( N WWalksN G ) ( ( W prefix ( N + 1 ) ) = y /\ ( y ` 0 ) = P /\ { ( lastS ` y ) , ( lastS ` W ) } e. E ) ) ) ) | 
						
							| 46 | 45 | com13 |  |-  ( E. y e. ( N WWalksN G ) ( ( W prefix ( N + 1 ) ) = y /\ { ( lastS ` y ) , ( lastS ` W ) } e. E ) -> ( ( N e. NN0 /\ W e. ( ( N + 1 ) WWalksN G ) ) -> ( ( W ` 0 ) = P -> E. y e. ( N WWalksN G ) ( ( W prefix ( N + 1 ) ) = y /\ ( y ` 0 ) = P /\ { ( lastS ` y ) , ( lastS ` W ) } e. E ) ) ) ) | 
						
							| 47 | 3 46 | mpcom |  |-  ( ( N e. NN0 /\ W e. ( ( N + 1 ) WWalksN G ) ) -> ( ( W ` 0 ) = P -> E. y e. ( N WWalksN G ) ( ( W prefix ( N + 1 ) ) = y /\ ( y ` 0 ) = P /\ { ( lastS ` y ) , ( lastS ` W ) } e. E ) ) ) | 
						
							| 48 | 29 33 | syl |  |-  ( ( N e. NN0 /\ W e. ( ( N + 1 ) WWalksN G ) ) -> ( ( W prefix ( N + 1 ) ) ` 0 ) = ( W ` 0 ) ) | 
						
							| 49 | 48 | eqcomd |  |-  ( ( N e. NN0 /\ W e. ( ( N + 1 ) WWalksN G ) ) -> ( W ` 0 ) = ( ( W prefix ( N + 1 ) ) ` 0 ) ) | 
						
							| 50 | 49 | adantl |  |-  ( ( ( ( W prefix ( N + 1 ) ) = y /\ ( y ` 0 ) = P ) /\ ( N e. NN0 /\ W e. ( ( N + 1 ) WWalksN G ) ) ) -> ( W ` 0 ) = ( ( W prefix ( N + 1 ) ) ` 0 ) ) | 
						
							| 51 |  | fveq1 |  |-  ( ( W prefix ( N + 1 ) ) = y -> ( ( W prefix ( N + 1 ) ) ` 0 ) = ( y ` 0 ) ) | 
						
							| 52 | 51 | adantr |  |-  ( ( ( W prefix ( N + 1 ) ) = y /\ ( y ` 0 ) = P ) -> ( ( W prefix ( N + 1 ) ) ` 0 ) = ( y ` 0 ) ) | 
						
							| 53 | 52 | adantr |  |-  ( ( ( ( W prefix ( N + 1 ) ) = y /\ ( y ` 0 ) = P ) /\ ( N e. NN0 /\ W e. ( ( N + 1 ) WWalksN G ) ) ) -> ( ( W prefix ( N + 1 ) ) ` 0 ) = ( y ` 0 ) ) | 
						
							| 54 |  | simpr |  |-  ( ( ( W prefix ( N + 1 ) ) = y /\ ( y ` 0 ) = P ) -> ( y ` 0 ) = P ) | 
						
							| 55 | 54 | adantr |  |-  ( ( ( ( W prefix ( N + 1 ) ) = y /\ ( y ` 0 ) = P ) /\ ( N e. NN0 /\ W e. ( ( N + 1 ) WWalksN G ) ) ) -> ( y ` 0 ) = P ) | 
						
							| 56 | 50 53 55 | 3eqtrd |  |-  ( ( ( ( W prefix ( N + 1 ) ) = y /\ ( y ` 0 ) = P ) /\ ( N e. NN0 /\ W e. ( ( N + 1 ) WWalksN G ) ) ) -> ( W ` 0 ) = P ) | 
						
							| 57 | 56 | ex |  |-  ( ( ( W prefix ( N + 1 ) ) = y /\ ( y ` 0 ) = P ) -> ( ( N e. NN0 /\ W e. ( ( N + 1 ) WWalksN G ) ) -> ( W ` 0 ) = P ) ) | 
						
							| 58 | 57 | 3adant3 |  |-  ( ( ( W prefix ( N + 1 ) ) = y /\ ( y ` 0 ) = P /\ { ( lastS ` y ) , ( lastS ` W ) } e. E ) -> ( ( N e. NN0 /\ W e. ( ( N + 1 ) WWalksN G ) ) -> ( W ` 0 ) = P ) ) | 
						
							| 59 | 58 | com12 |  |-  ( ( N e. NN0 /\ W e. ( ( N + 1 ) WWalksN G ) ) -> ( ( ( W prefix ( N + 1 ) ) = y /\ ( y ` 0 ) = P /\ { ( lastS ` y ) , ( lastS ` W ) } e. E ) -> ( W ` 0 ) = P ) ) | 
						
							| 60 | 59 | rexlimdvw |  |-  ( ( N e. NN0 /\ W e. ( ( N + 1 ) WWalksN G ) ) -> ( E. y e. ( N WWalksN G ) ( ( W prefix ( N + 1 ) ) = y /\ ( y ` 0 ) = P /\ { ( lastS ` y ) , ( lastS ` W ) } e. E ) -> ( W ` 0 ) = P ) ) | 
						
							| 61 | 47 60 | impbid |  |-  ( ( N e. NN0 /\ W e. ( ( N + 1 ) WWalksN G ) ) -> ( ( W ` 0 ) = P <-> E. y e. ( N WWalksN G ) ( ( W prefix ( N + 1 ) ) = y /\ ( y ` 0 ) = P /\ { ( lastS ` y ) , ( lastS ` W ) } e. E ) ) ) |