Description: For each walk (as word) of length at least 1 there is a shorter walk (as word) starting at the same vertex. (Contributed by Alexander van der Vekens, 22-Aug-2018) (Revised by AV, 18-Apr-2021) (Revised by AV, 26-Oct-2022)
Ref | Expression | ||
---|---|---|---|
Hypothesis | wwlksnredwwlkn.e | |
|
Assertion | wwlksnredwwlkn0 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wwlksnredwwlkn.e | |
|
2 | 1 | wwlksnredwwlkn | |
3 | 2 | imp | |
4 | simpl | |
|
5 | 4 | adantl | |
6 | fveq1 | |
|
7 | 6 | eqcoms | |
8 | 7 | adantr | |
9 | eqid | |
|
10 | 9 1 | wwlknp | |
11 | nn0p1nn | |
|
12 | peano2nn0 | |
|
13 | nn0re | |
|
14 | lep1 | |
|
15 | 12 13 14 | 3syl | |
16 | peano2nn0 | |
|
17 | 16 | nn0zd | |
18 | fznn | |
|
19 | 12 17 18 | 3syl | |
20 | 11 15 19 | mpbir2and | |
21 | oveq2 | |
|
22 | 21 | eleq2d | |
23 | 20 22 | imbitrrid | |
24 | 23 | adantl | |
25 | simpl | |
|
26 | 24 25 | jctild | |
27 | 26 | 3adant3 | |
28 | 10 27 | syl | |
29 | 28 | impcom | |
30 | 29 | adantl | |
31 | 30 | adantr | |
32 | 31 | adantl | |
33 | pfxfv0 | |
|
34 | 32 33 | syl | |
35 | simprll | |
|
36 | 8 34 35 | 3eqtrd | |
37 | 36 | ex | |
38 | 37 | adantr | |
39 | 38 | impcom | |
40 | simpr | |
|
41 | 40 | adantl | |
42 | 5 39 41 | 3jca | |
43 | 42 | ex | |
44 | 43 | reximdva | |
45 | 44 | ex | |
46 | 45 | com13 | |
47 | 3 46 | mpcom | |
48 | 29 33 | syl | |
49 | 48 | eqcomd | |
50 | 49 | adantl | |
51 | fveq1 | |
|
52 | 51 | adantr | |
53 | 52 | adantr | |
54 | simpr | |
|
55 | 54 | adantr | |
56 | 50 53 55 | 3eqtrd | |
57 | 56 | ex | |
58 | 57 | 3adant3 | |
59 | 58 | com12 | |
60 | 59 | rexlimdvw | |
61 | 47 60 | impbid | |