Metamath Proof Explorer


Theorem wwlksnredwwlkn0

Description: For each walk (as word) of length at least 1 there is a shorter walk (as word) starting at the same vertex. (Contributed by Alexander van der Vekens, 22-Aug-2018) (Revised by AV, 18-Apr-2021) (Revised by AV, 26-Oct-2022)

Ref Expression
Hypothesis wwlksnredwwlkn.e E=EdgG
Assertion wwlksnredwwlkn0 N0WN+1WWalksNGW0=PyNWWalksNGWprefixN+1=yy0=PlastSylastSWE

Proof

Step Hyp Ref Expression
1 wwlksnredwwlkn.e E=EdgG
2 1 wwlksnredwwlkn N0WN+1WWalksNGyNWWalksNGWprefixN+1=ylastSylastSWE
3 2 imp N0WN+1WWalksNGyNWWalksNGWprefixN+1=ylastSylastSWE
4 simpl WprefixN+1=ylastSylastSWEWprefixN+1=y
5 4 adantl W0=PN0WN+1WWalksNGyNWWalksNGWprefixN+1=ylastSylastSWEWprefixN+1=y
6 fveq1 y=WprefixN+1y0=WprefixN+10
7 6 eqcoms WprefixN+1=yy0=WprefixN+10
8 7 adantr WprefixN+1=yW0=PN0WN+1WWalksNGyNWWalksNGy0=WprefixN+10
9 eqid VtxG=VtxG
10 9 1 wwlknp WN+1WWalksNGWWordVtxGW=N+1+1i0..^N+1WiWi+1E
11 nn0p1nn N0N+1
12 peano2nn0 N0N+10
13 nn0re N+10N+1
14 lep1 N+1N+1N+1+1
15 12 13 14 3syl N0N+1N+1+1
16 peano2nn0 N+10N+1+10
17 16 nn0zd N+10N+1+1
18 fznn N+1+1N+11N+1+1N+1N+1N+1+1
19 12 17 18 3syl N0N+11N+1+1N+1N+1N+1+1
20 11 15 19 mpbir2and N0N+11N+1+1
21 oveq2 W=N+1+11W=1N+1+1
22 21 eleq2d W=N+1+1N+11WN+11N+1+1
23 20 22 imbitrrid W=N+1+1N0N+11W
24 23 adantl WWordVtxGW=N+1+1N0N+11W
25 simpl WWordVtxGW=N+1+1WWordVtxG
26 24 25 jctild WWordVtxGW=N+1+1N0WWordVtxGN+11W
27 26 3adant3 WWordVtxGW=N+1+1i0..^N+1WiWi+1EN0WWordVtxGN+11W
28 10 27 syl WN+1WWalksNGN0WWordVtxGN+11W
29 28 impcom N0WN+1WWalksNGWWordVtxGN+11W
30 29 adantl W0=PN0WN+1WWalksNGWWordVtxGN+11W
31 30 adantr W0=PN0WN+1WWalksNGyNWWalksNGWWordVtxGN+11W
32 31 adantl WprefixN+1=yW0=PN0WN+1WWalksNGyNWWalksNGWWordVtxGN+11W
33 pfxfv0 WWordVtxGN+11WWprefixN+10=W0
34 32 33 syl WprefixN+1=yW0=PN0WN+1WWalksNGyNWWalksNGWprefixN+10=W0
35 simprll WprefixN+1=yW0=PN0WN+1WWalksNGyNWWalksNGW0=P
36 8 34 35 3eqtrd WprefixN+1=yW0=PN0WN+1WWalksNGyNWWalksNGy0=P
37 36 ex WprefixN+1=yW0=PN0WN+1WWalksNGyNWWalksNGy0=P
38 37 adantr WprefixN+1=ylastSylastSWEW0=PN0WN+1WWalksNGyNWWalksNGy0=P
39 38 impcom W0=PN0WN+1WWalksNGyNWWalksNGWprefixN+1=ylastSylastSWEy0=P
40 simpr WprefixN+1=ylastSylastSWElastSylastSWE
41 40 adantl W0=PN0WN+1WWalksNGyNWWalksNGWprefixN+1=ylastSylastSWElastSylastSWE
42 5 39 41 3jca W0=PN0WN+1WWalksNGyNWWalksNGWprefixN+1=ylastSylastSWEWprefixN+1=yy0=PlastSylastSWE
43 42 ex W0=PN0WN+1WWalksNGyNWWalksNGWprefixN+1=ylastSylastSWEWprefixN+1=yy0=PlastSylastSWE
44 43 reximdva W0=PN0WN+1WWalksNGyNWWalksNGWprefixN+1=ylastSylastSWEyNWWalksNGWprefixN+1=yy0=PlastSylastSWE
45 44 ex W0=PN0WN+1WWalksNGyNWWalksNGWprefixN+1=ylastSylastSWEyNWWalksNGWprefixN+1=yy0=PlastSylastSWE
46 45 com13 yNWWalksNGWprefixN+1=ylastSylastSWEN0WN+1WWalksNGW0=PyNWWalksNGWprefixN+1=yy0=PlastSylastSWE
47 3 46 mpcom N0WN+1WWalksNGW0=PyNWWalksNGWprefixN+1=yy0=PlastSylastSWE
48 29 33 syl N0WN+1WWalksNGWprefixN+10=W0
49 48 eqcomd N0WN+1WWalksNGW0=WprefixN+10
50 49 adantl WprefixN+1=yy0=PN0WN+1WWalksNGW0=WprefixN+10
51 fveq1 WprefixN+1=yWprefixN+10=y0
52 51 adantr WprefixN+1=yy0=PWprefixN+10=y0
53 52 adantr WprefixN+1=yy0=PN0WN+1WWalksNGWprefixN+10=y0
54 simpr WprefixN+1=yy0=Py0=P
55 54 adantr WprefixN+1=yy0=PN0WN+1WWalksNGy0=P
56 50 53 55 3eqtrd WprefixN+1=yy0=PN0WN+1WWalksNGW0=P
57 56 ex WprefixN+1=yy0=PN0WN+1WWalksNGW0=P
58 57 3adant3 WprefixN+1=yy0=PlastSylastSWEN0WN+1WWalksNGW0=P
59 58 com12 N0WN+1WWalksNGWprefixN+1=yy0=PlastSylastSWEW0=P
60 59 rexlimdvw N0WN+1WWalksNGyNWWalksNGWprefixN+1=yy0=PlastSylastSWEW0=P
61 47 60 impbid N0WN+1WWalksNGW0=PyNWWalksNGWprefixN+1=yy0=PlastSylastSWE