Metamath Proof Explorer


Theorem wwlknp

Description: Properties of a set being a walk of length n (represented by a word). (Contributed by Alexander van der Vekens, 17-Jun-2018) (Revised by AV, 9-Apr-2021)

Ref Expression
Hypotheses wwlkbp.v V=VtxG
wwlknp.e E=EdgG
Assertion wwlknp WNWWalksNGWWordVW=N+1i0..^NWiWi+1E

Proof

Step Hyp Ref Expression
1 wwlkbp.v V=VtxG
2 wwlknp.e E=EdgG
3 1 wwlknbp WNWWalksNGGVN0WWordV
4 iswwlksn N0WNWWalksNGWWWalksGW=N+1
5 1 2 iswwlks WWWalksGWWWordVi0..^W1WiWi+1E
6 simpl2 WWWordVi0..^W1WiWi+1EW=N+1N0WWordV
7 simprl WWWordVi0..^W1WiWi+1EW=N+1N0W=N+1
8 oveq1 W=N+1W1=N+1-1
9 nn0cn N0N
10 pncan1 NN+1-1=N
11 9 10 syl N0N+1-1=N
12 8 11 sylan9eq W=N+1N0W1=N
13 12 oveq2d W=N+1N00..^W1=0..^N
14 13 raleqdv W=N+1N0i0..^W1WiWi+1Ei0..^NWiWi+1E
15 14 biimpcd i0..^W1WiWi+1EW=N+1N0i0..^NWiWi+1E
16 15 3ad2ant3 WWWordVi0..^W1WiWi+1EW=N+1N0i0..^NWiWi+1E
17 16 imp WWWordVi0..^W1WiWi+1EW=N+1N0i0..^NWiWi+1E
18 6 7 17 3jca WWWordVi0..^W1WiWi+1EW=N+1N0WWordVW=N+1i0..^NWiWi+1E
19 18 ex WWWordVi0..^W1WiWi+1EW=N+1N0WWordVW=N+1i0..^NWiWi+1E
20 5 19 sylbi WWWalksGW=N+1N0WWordVW=N+1i0..^NWiWi+1E
21 20 expdimp WWWalksGW=N+1N0WWordVW=N+1i0..^NWiWi+1E
22 21 com12 N0WWWalksGW=N+1WWordVW=N+1i0..^NWiWi+1E
23 4 22 sylbid N0WNWWalksNGWWordVW=N+1i0..^NWiWi+1E
24 23 3ad2ant2 GVN0WWordVWNWWalksNGWWordVW=N+1i0..^NWiWi+1E
25 3 24 mpcom WNWWalksNGWWordVW=N+1i0..^NWiWi+1E