Metamath Proof Explorer


Theorem wwlknbp1

Description: Other basic properties of a walk of a fixed length as word. (Contributed by AV, 8-Mar-2022)

Ref Expression
Assertion wwlknbp1 WNWWalksNGN0WWordVtxGW=N+1

Proof

Step Hyp Ref Expression
1 eqid VtxG=VtxG
2 1 wwlknbp WNWWalksNGGVN0WWordVtxG
3 eqid EdgG=EdgG
4 1 3 wwlknp WNWWalksNGWWordVtxGW=N+1i0..^NWiWi+1EdgG
5 simpl N0WWordVtxGW=N+1i0..^NWiWi+1EdgGN0
6 simpr1 N0WWordVtxGW=N+1i0..^NWiWi+1EdgGWWordVtxG
7 simpr2 N0WWordVtxGW=N+1i0..^NWiWi+1EdgGW=N+1
8 5 6 7 3jca N0WWordVtxGW=N+1i0..^NWiWi+1EdgGN0WWordVtxGW=N+1
9 8 ex N0WWordVtxGW=N+1i0..^NWiWi+1EdgGN0WWordVtxGW=N+1
10 9 3ad2ant2 GVN0WWordVtxGWWordVtxGW=N+1i0..^NWiWi+1EdgGN0WWordVtxGW=N+1
11 2 4 10 sylc WNWWalksNGN0WWordVtxGW=N+1