| Step | Hyp | Ref | Expression | 
						
							| 1 |  | wwlksnredwwlkn.e | ⊢ 𝐸  =  ( Edg ‘ 𝐺 ) | 
						
							| 2 | 1 | wwlksnredwwlkn | ⊢ ( 𝑁  ∈  ℕ0  →  ( 𝑊  ∈  ( ( 𝑁  +  1 )  WWalksN  𝐺 )  →  ∃ 𝑦  ∈  ( 𝑁  WWalksN  𝐺 ) ( ( 𝑊  prefix  ( 𝑁  +  1 ) )  =  𝑦  ∧  { ( lastS ‘ 𝑦 ) ,  ( lastS ‘ 𝑊 ) }  ∈  𝐸 ) ) ) | 
						
							| 3 | 2 | imp | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝑊  ∈  ( ( 𝑁  +  1 )  WWalksN  𝐺 ) )  →  ∃ 𝑦  ∈  ( 𝑁  WWalksN  𝐺 ) ( ( 𝑊  prefix  ( 𝑁  +  1 ) )  =  𝑦  ∧  { ( lastS ‘ 𝑦 ) ,  ( lastS ‘ 𝑊 ) }  ∈  𝐸 ) ) | 
						
							| 4 |  | simpl | ⊢ ( ( ( 𝑊  prefix  ( 𝑁  +  1 ) )  =  𝑦  ∧  { ( lastS ‘ 𝑦 ) ,  ( lastS ‘ 𝑊 ) }  ∈  𝐸 )  →  ( 𝑊  prefix  ( 𝑁  +  1 ) )  =  𝑦 ) | 
						
							| 5 | 4 | adantl | ⊢ ( ( ( ( ( 𝑊 ‘ 0 )  =  𝑃  ∧  ( 𝑁  ∈  ℕ0  ∧  𝑊  ∈  ( ( 𝑁  +  1 )  WWalksN  𝐺 ) ) )  ∧  𝑦  ∈  ( 𝑁  WWalksN  𝐺 ) )  ∧  ( ( 𝑊  prefix  ( 𝑁  +  1 ) )  =  𝑦  ∧  { ( lastS ‘ 𝑦 ) ,  ( lastS ‘ 𝑊 ) }  ∈  𝐸 ) )  →  ( 𝑊  prefix  ( 𝑁  +  1 ) )  =  𝑦 ) | 
						
							| 6 |  | fveq1 | ⊢ ( 𝑦  =  ( 𝑊  prefix  ( 𝑁  +  1 ) )  →  ( 𝑦 ‘ 0 )  =  ( ( 𝑊  prefix  ( 𝑁  +  1 ) ) ‘ 0 ) ) | 
						
							| 7 | 6 | eqcoms | ⊢ ( ( 𝑊  prefix  ( 𝑁  +  1 ) )  =  𝑦  →  ( 𝑦 ‘ 0 )  =  ( ( 𝑊  prefix  ( 𝑁  +  1 ) ) ‘ 0 ) ) | 
						
							| 8 | 7 | adantr | ⊢ ( ( ( 𝑊  prefix  ( 𝑁  +  1 ) )  =  𝑦  ∧  ( ( ( 𝑊 ‘ 0 )  =  𝑃  ∧  ( 𝑁  ∈  ℕ0  ∧  𝑊  ∈  ( ( 𝑁  +  1 )  WWalksN  𝐺 ) ) )  ∧  𝑦  ∈  ( 𝑁  WWalksN  𝐺 ) ) )  →  ( 𝑦 ‘ 0 )  =  ( ( 𝑊  prefix  ( 𝑁  +  1 ) ) ‘ 0 ) ) | 
						
							| 9 |  | eqid | ⊢ ( Vtx ‘ 𝐺 )  =  ( Vtx ‘ 𝐺 ) | 
						
							| 10 | 9 1 | wwlknp | ⊢ ( 𝑊  ∈  ( ( 𝑁  +  1 )  WWalksN  𝐺 )  →  ( 𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑊 )  =  ( ( 𝑁  +  1 )  +  1 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( 𝑁  +  1 ) ) { ( 𝑊 ‘ 𝑖 ) ,  ( 𝑊 ‘ ( 𝑖  +  1 ) ) }  ∈  𝐸 ) ) | 
						
							| 11 |  | nn0p1nn | ⊢ ( 𝑁  ∈  ℕ0  →  ( 𝑁  +  1 )  ∈  ℕ ) | 
						
							| 12 |  | peano2nn0 | ⊢ ( 𝑁  ∈  ℕ0  →  ( 𝑁  +  1 )  ∈  ℕ0 ) | 
						
							| 13 |  | nn0re | ⊢ ( ( 𝑁  +  1 )  ∈  ℕ0  →  ( 𝑁  +  1 )  ∈  ℝ ) | 
						
							| 14 |  | lep1 | ⊢ ( ( 𝑁  +  1 )  ∈  ℝ  →  ( 𝑁  +  1 )  ≤  ( ( 𝑁  +  1 )  +  1 ) ) | 
						
							| 15 | 12 13 14 | 3syl | ⊢ ( 𝑁  ∈  ℕ0  →  ( 𝑁  +  1 )  ≤  ( ( 𝑁  +  1 )  +  1 ) ) | 
						
							| 16 |  | peano2nn0 | ⊢ ( ( 𝑁  +  1 )  ∈  ℕ0  →  ( ( 𝑁  +  1 )  +  1 )  ∈  ℕ0 ) | 
						
							| 17 | 16 | nn0zd | ⊢ ( ( 𝑁  +  1 )  ∈  ℕ0  →  ( ( 𝑁  +  1 )  +  1 )  ∈  ℤ ) | 
						
							| 18 |  | fznn | ⊢ ( ( ( 𝑁  +  1 )  +  1 )  ∈  ℤ  →  ( ( 𝑁  +  1 )  ∈  ( 1 ... ( ( 𝑁  +  1 )  +  1 ) )  ↔  ( ( 𝑁  +  1 )  ∈  ℕ  ∧  ( 𝑁  +  1 )  ≤  ( ( 𝑁  +  1 )  +  1 ) ) ) ) | 
						
							| 19 | 12 17 18 | 3syl | ⊢ ( 𝑁  ∈  ℕ0  →  ( ( 𝑁  +  1 )  ∈  ( 1 ... ( ( 𝑁  +  1 )  +  1 ) )  ↔  ( ( 𝑁  +  1 )  ∈  ℕ  ∧  ( 𝑁  +  1 )  ≤  ( ( 𝑁  +  1 )  +  1 ) ) ) ) | 
						
							| 20 | 11 15 19 | mpbir2and | ⊢ ( 𝑁  ∈  ℕ0  →  ( 𝑁  +  1 )  ∈  ( 1 ... ( ( 𝑁  +  1 )  +  1 ) ) ) | 
						
							| 21 |  | oveq2 | ⊢ ( ( ♯ ‘ 𝑊 )  =  ( ( 𝑁  +  1 )  +  1 )  →  ( 1 ... ( ♯ ‘ 𝑊 ) )  =  ( 1 ... ( ( 𝑁  +  1 )  +  1 ) ) ) | 
						
							| 22 | 21 | eleq2d | ⊢ ( ( ♯ ‘ 𝑊 )  =  ( ( 𝑁  +  1 )  +  1 )  →  ( ( 𝑁  +  1 )  ∈  ( 1 ... ( ♯ ‘ 𝑊 ) )  ↔  ( 𝑁  +  1 )  ∈  ( 1 ... ( ( 𝑁  +  1 )  +  1 ) ) ) ) | 
						
							| 23 | 20 22 | imbitrrid | ⊢ ( ( ♯ ‘ 𝑊 )  =  ( ( 𝑁  +  1 )  +  1 )  →  ( 𝑁  ∈  ℕ0  →  ( 𝑁  +  1 )  ∈  ( 1 ... ( ♯ ‘ 𝑊 ) ) ) ) | 
						
							| 24 | 23 | adantl | ⊢ ( ( 𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑊 )  =  ( ( 𝑁  +  1 )  +  1 ) )  →  ( 𝑁  ∈  ℕ0  →  ( 𝑁  +  1 )  ∈  ( 1 ... ( ♯ ‘ 𝑊 ) ) ) ) | 
						
							| 25 |  | simpl | ⊢ ( ( 𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑊 )  =  ( ( 𝑁  +  1 )  +  1 ) )  →  𝑊  ∈  Word  ( Vtx ‘ 𝐺 ) ) | 
						
							| 26 | 24 25 | jctild | ⊢ ( ( 𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑊 )  =  ( ( 𝑁  +  1 )  +  1 ) )  →  ( 𝑁  ∈  ℕ0  →  ( 𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( 𝑁  +  1 )  ∈  ( 1 ... ( ♯ ‘ 𝑊 ) ) ) ) ) | 
						
							| 27 | 26 | 3adant3 | ⊢ ( ( 𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑊 )  =  ( ( 𝑁  +  1 )  +  1 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( 𝑁  +  1 ) ) { ( 𝑊 ‘ 𝑖 ) ,  ( 𝑊 ‘ ( 𝑖  +  1 ) ) }  ∈  𝐸 )  →  ( 𝑁  ∈  ℕ0  →  ( 𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( 𝑁  +  1 )  ∈  ( 1 ... ( ♯ ‘ 𝑊 ) ) ) ) ) | 
						
							| 28 | 10 27 | syl | ⊢ ( 𝑊  ∈  ( ( 𝑁  +  1 )  WWalksN  𝐺 )  →  ( 𝑁  ∈  ℕ0  →  ( 𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( 𝑁  +  1 )  ∈  ( 1 ... ( ♯ ‘ 𝑊 ) ) ) ) ) | 
						
							| 29 | 28 | impcom | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝑊  ∈  ( ( 𝑁  +  1 )  WWalksN  𝐺 ) )  →  ( 𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( 𝑁  +  1 )  ∈  ( 1 ... ( ♯ ‘ 𝑊 ) ) ) ) | 
						
							| 30 | 29 | adantl | ⊢ ( ( ( 𝑊 ‘ 0 )  =  𝑃  ∧  ( 𝑁  ∈  ℕ0  ∧  𝑊  ∈  ( ( 𝑁  +  1 )  WWalksN  𝐺 ) ) )  →  ( 𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( 𝑁  +  1 )  ∈  ( 1 ... ( ♯ ‘ 𝑊 ) ) ) ) | 
						
							| 31 | 30 | adantr | ⊢ ( ( ( ( 𝑊 ‘ 0 )  =  𝑃  ∧  ( 𝑁  ∈  ℕ0  ∧  𝑊  ∈  ( ( 𝑁  +  1 )  WWalksN  𝐺 ) ) )  ∧  𝑦  ∈  ( 𝑁  WWalksN  𝐺 ) )  →  ( 𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( 𝑁  +  1 )  ∈  ( 1 ... ( ♯ ‘ 𝑊 ) ) ) ) | 
						
							| 32 | 31 | adantl | ⊢ ( ( ( 𝑊  prefix  ( 𝑁  +  1 ) )  =  𝑦  ∧  ( ( ( 𝑊 ‘ 0 )  =  𝑃  ∧  ( 𝑁  ∈  ℕ0  ∧  𝑊  ∈  ( ( 𝑁  +  1 )  WWalksN  𝐺 ) ) )  ∧  𝑦  ∈  ( 𝑁  WWalksN  𝐺 ) ) )  →  ( 𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( 𝑁  +  1 )  ∈  ( 1 ... ( ♯ ‘ 𝑊 ) ) ) ) | 
						
							| 33 |  | pfxfv0 | ⊢ ( ( 𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( 𝑁  +  1 )  ∈  ( 1 ... ( ♯ ‘ 𝑊 ) ) )  →  ( ( 𝑊  prefix  ( 𝑁  +  1 ) ) ‘ 0 )  =  ( 𝑊 ‘ 0 ) ) | 
						
							| 34 | 32 33 | syl | ⊢ ( ( ( 𝑊  prefix  ( 𝑁  +  1 ) )  =  𝑦  ∧  ( ( ( 𝑊 ‘ 0 )  =  𝑃  ∧  ( 𝑁  ∈  ℕ0  ∧  𝑊  ∈  ( ( 𝑁  +  1 )  WWalksN  𝐺 ) ) )  ∧  𝑦  ∈  ( 𝑁  WWalksN  𝐺 ) ) )  →  ( ( 𝑊  prefix  ( 𝑁  +  1 ) ) ‘ 0 )  =  ( 𝑊 ‘ 0 ) ) | 
						
							| 35 |  | simprll | ⊢ ( ( ( 𝑊  prefix  ( 𝑁  +  1 ) )  =  𝑦  ∧  ( ( ( 𝑊 ‘ 0 )  =  𝑃  ∧  ( 𝑁  ∈  ℕ0  ∧  𝑊  ∈  ( ( 𝑁  +  1 )  WWalksN  𝐺 ) ) )  ∧  𝑦  ∈  ( 𝑁  WWalksN  𝐺 ) ) )  →  ( 𝑊 ‘ 0 )  =  𝑃 ) | 
						
							| 36 | 8 34 35 | 3eqtrd | ⊢ ( ( ( 𝑊  prefix  ( 𝑁  +  1 ) )  =  𝑦  ∧  ( ( ( 𝑊 ‘ 0 )  =  𝑃  ∧  ( 𝑁  ∈  ℕ0  ∧  𝑊  ∈  ( ( 𝑁  +  1 )  WWalksN  𝐺 ) ) )  ∧  𝑦  ∈  ( 𝑁  WWalksN  𝐺 ) ) )  →  ( 𝑦 ‘ 0 )  =  𝑃 ) | 
						
							| 37 | 36 | ex | ⊢ ( ( 𝑊  prefix  ( 𝑁  +  1 ) )  =  𝑦  →  ( ( ( ( 𝑊 ‘ 0 )  =  𝑃  ∧  ( 𝑁  ∈  ℕ0  ∧  𝑊  ∈  ( ( 𝑁  +  1 )  WWalksN  𝐺 ) ) )  ∧  𝑦  ∈  ( 𝑁  WWalksN  𝐺 ) )  →  ( 𝑦 ‘ 0 )  =  𝑃 ) ) | 
						
							| 38 | 37 | adantr | ⊢ ( ( ( 𝑊  prefix  ( 𝑁  +  1 ) )  =  𝑦  ∧  { ( lastS ‘ 𝑦 ) ,  ( lastS ‘ 𝑊 ) }  ∈  𝐸 )  →  ( ( ( ( 𝑊 ‘ 0 )  =  𝑃  ∧  ( 𝑁  ∈  ℕ0  ∧  𝑊  ∈  ( ( 𝑁  +  1 )  WWalksN  𝐺 ) ) )  ∧  𝑦  ∈  ( 𝑁  WWalksN  𝐺 ) )  →  ( 𝑦 ‘ 0 )  =  𝑃 ) ) | 
						
							| 39 | 38 | impcom | ⊢ ( ( ( ( ( 𝑊 ‘ 0 )  =  𝑃  ∧  ( 𝑁  ∈  ℕ0  ∧  𝑊  ∈  ( ( 𝑁  +  1 )  WWalksN  𝐺 ) ) )  ∧  𝑦  ∈  ( 𝑁  WWalksN  𝐺 ) )  ∧  ( ( 𝑊  prefix  ( 𝑁  +  1 ) )  =  𝑦  ∧  { ( lastS ‘ 𝑦 ) ,  ( lastS ‘ 𝑊 ) }  ∈  𝐸 ) )  →  ( 𝑦 ‘ 0 )  =  𝑃 ) | 
						
							| 40 |  | simpr | ⊢ ( ( ( 𝑊  prefix  ( 𝑁  +  1 ) )  =  𝑦  ∧  { ( lastS ‘ 𝑦 ) ,  ( lastS ‘ 𝑊 ) }  ∈  𝐸 )  →  { ( lastS ‘ 𝑦 ) ,  ( lastS ‘ 𝑊 ) }  ∈  𝐸 ) | 
						
							| 41 | 40 | adantl | ⊢ ( ( ( ( ( 𝑊 ‘ 0 )  =  𝑃  ∧  ( 𝑁  ∈  ℕ0  ∧  𝑊  ∈  ( ( 𝑁  +  1 )  WWalksN  𝐺 ) ) )  ∧  𝑦  ∈  ( 𝑁  WWalksN  𝐺 ) )  ∧  ( ( 𝑊  prefix  ( 𝑁  +  1 ) )  =  𝑦  ∧  { ( lastS ‘ 𝑦 ) ,  ( lastS ‘ 𝑊 ) }  ∈  𝐸 ) )  →  { ( lastS ‘ 𝑦 ) ,  ( lastS ‘ 𝑊 ) }  ∈  𝐸 ) | 
						
							| 42 | 5 39 41 | 3jca | ⊢ ( ( ( ( ( 𝑊 ‘ 0 )  =  𝑃  ∧  ( 𝑁  ∈  ℕ0  ∧  𝑊  ∈  ( ( 𝑁  +  1 )  WWalksN  𝐺 ) ) )  ∧  𝑦  ∈  ( 𝑁  WWalksN  𝐺 ) )  ∧  ( ( 𝑊  prefix  ( 𝑁  +  1 ) )  =  𝑦  ∧  { ( lastS ‘ 𝑦 ) ,  ( lastS ‘ 𝑊 ) }  ∈  𝐸 ) )  →  ( ( 𝑊  prefix  ( 𝑁  +  1 ) )  =  𝑦  ∧  ( 𝑦 ‘ 0 )  =  𝑃  ∧  { ( lastS ‘ 𝑦 ) ,  ( lastS ‘ 𝑊 ) }  ∈  𝐸 ) ) | 
						
							| 43 | 42 | ex | ⊢ ( ( ( ( 𝑊 ‘ 0 )  =  𝑃  ∧  ( 𝑁  ∈  ℕ0  ∧  𝑊  ∈  ( ( 𝑁  +  1 )  WWalksN  𝐺 ) ) )  ∧  𝑦  ∈  ( 𝑁  WWalksN  𝐺 ) )  →  ( ( ( 𝑊  prefix  ( 𝑁  +  1 ) )  =  𝑦  ∧  { ( lastS ‘ 𝑦 ) ,  ( lastS ‘ 𝑊 ) }  ∈  𝐸 )  →  ( ( 𝑊  prefix  ( 𝑁  +  1 ) )  =  𝑦  ∧  ( 𝑦 ‘ 0 )  =  𝑃  ∧  { ( lastS ‘ 𝑦 ) ,  ( lastS ‘ 𝑊 ) }  ∈  𝐸 ) ) ) | 
						
							| 44 | 43 | reximdva | ⊢ ( ( ( 𝑊 ‘ 0 )  =  𝑃  ∧  ( 𝑁  ∈  ℕ0  ∧  𝑊  ∈  ( ( 𝑁  +  1 )  WWalksN  𝐺 ) ) )  →  ( ∃ 𝑦  ∈  ( 𝑁  WWalksN  𝐺 ) ( ( 𝑊  prefix  ( 𝑁  +  1 ) )  =  𝑦  ∧  { ( lastS ‘ 𝑦 ) ,  ( lastS ‘ 𝑊 ) }  ∈  𝐸 )  →  ∃ 𝑦  ∈  ( 𝑁  WWalksN  𝐺 ) ( ( 𝑊  prefix  ( 𝑁  +  1 ) )  =  𝑦  ∧  ( 𝑦 ‘ 0 )  =  𝑃  ∧  { ( lastS ‘ 𝑦 ) ,  ( lastS ‘ 𝑊 ) }  ∈  𝐸 ) ) ) | 
						
							| 45 | 44 | ex | ⊢ ( ( 𝑊 ‘ 0 )  =  𝑃  →  ( ( 𝑁  ∈  ℕ0  ∧  𝑊  ∈  ( ( 𝑁  +  1 )  WWalksN  𝐺 ) )  →  ( ∃ 𝑦  ∈  ( 𝑁  WWalksN  𝐺 ) ( ( 𝑊  prefix  ( 𝑁  +  1 ) )  =  𝑦  ∧  { ( lastS ‘ 𝑦 ) ,  ( lastS ‘ 𝑊 ) }  ∈  𝐸 )  →  ∃ 𝑦  ∈  ( 𝑁  WWalksN  𝐺 ) ( ( 𝑊  prefix  ( 𝑁  +  1 ) )  =  𝑦  ∧  ( 𝑦 ‘ 0 )  =  𝑃  ∧  { ( lastS ‘ 𝑦 ) ,  ( lastS ‘ 𝑊 ) }  ∈  𝐸 ) ) ) ) | 
						
							| 46 | 45 | com13 | ⊢ ( ∃ 𝑦  ∈  ( 𝑁  WWalksN  𝐺 ) ( ( 𝑊  prefix  ( 𝑁  +  1 ) )  =  𝑦  ∧  { ( lastS ‘ 𝑦 ) ,  ( lastS ‘ 𝑊 ) }  ∈  𝐸 )  →  ( ( 𝑁  ∈  ℕ0  ∧  𝑊  ∈  ( ( 𝑁  +  1 )  WWalksN  𝐺 ) )  →  ( ( 𝑊 ‘ 0 )  =  𝑃  →  ∃ 𝑦  ∈  ( 𝑁  WWalksN  𝐺 ) ( ( 𝑊  prefix  ( 𝑁  +  1 ) )  =  𝑦  ∧  ( 𝑦 ‘ 0 )  =  𝑃  ∧  { ( lastS ‘ 𝑦 ) ,  ( lastS ‘ 𝑊 ) }  ∈  𝐸 ) ) ) ) | 
						
							| 47 | 3 46 | mpcom | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝑊  ∈  ( ( 𝑁  +  1 )  WWalksN  𝐺 ) )  →  ( ( 𝑊 ‘ 0 )  =  𝑃  →  ∃ 𝑦  ∈  ( 𝑁  WWalksN  𝐺 ) ( ( 𝑊  prefix  ( 𝑁  +  1 ) )  =  𝑦  ∧  ( 𝑦 ‘ 0 )  =  𝑃  ∧  { ( lastS ‘ 𝑦 ) ,  ( lastS ‘ 𝑊 ) }  ∈  𝐸 ) ) ) | 
						
							| 48 | 29 33 | syl | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝑊  ∈  ( ( 𝑁  +  1 )  WWalksN  𝐺 ) )  →  ( ( 𝑊  prefix  ( 𝑁  +  1 ) ) ‘ 0 )  =  ( 𝑊 ‘ 0 ) ) | 
						
							| 49 | 48 | eqcomd | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝑊  ∈  ( ( 𝑁  +  1 )  WWalksN  𝐺 ) )  →  ( 𝑊 ‘ 0 )  =  ( ( 𝑊  prefix  ( 𝑁  +  1 ) ) ‘ 0 ) ) | 
						
							| 50 | 49 | adantl | ⊢ ( ( ( ( 𝑊  prefix  ( 𝑁  +  1 ) )  =  𝑦  ∧  ( 𝑦 ‘ 0 )  =  𝑃 )  ∧  ( 𝑁  ∈  ℕ0  ∧  𝑊  ∈  ( ( 𝑁  +  1 )  WWalksN  𝐺 ) ) )  →  ( 𝑊 ‘ 0 )  =  ( ( 𝑊  prefix  ( 𝑁  +  1 ) ) ‘ 0 ) ) | 
						
							| 51 |  | fveq1 | ⊢ ( ( 𝑊  prefix  ( 𝑁  +  1 ) )  =  𝑦  →  ( ( 𝑊  prefix  ( 𝑁  +  1 ) ) ‘ 0 )  =  ( 𝑦 ‘ 0 ) ) | 
						
							| 52 | 51 | adantr | ⊢ ( ( ( 𝑊  prefix  ( 𝑁  +  1 ) )  =  𝑦  ∧  ( 𝑦 ‘ 0 )  =  𝑃 )  →  ( ( 𝑊  prefix  ( 𝑁  +  1 ) ) ‘ 0 )  =  ( 𝑦 ‘ 0 ) ) | 
						
							| 53 | 52 | adantr | ⊢ ( ( ( ( 𝑊  prefix  ( 𝑁  +  1 ) )  =  𝑦  ∧  ( 𝑦 ‘ 0 )  =  𝑃 )  ∧  ( 𝑁  ∈  ℕ0  ∧  𝑊  ∈  ( ( 𝑁  +  1 )  WWalksN  𝐺 ) ) )  →  ( ( 𝑊  prefix  ( 𝑁  +  1 ) ) ‘ 0 )  =  ( 𝑦 ‘ 0 ) ) | 
						
							| 54 |  | simpr | ⊢ ( ( ( 𝑊  prefix  ( 𝑁  +  1 ) )  =  𝑦  ∧  ( 𝑦 ‘ 0 )  =  𝑃 )  →  ( 𝑦 ‘ 0 )  =  𝑃 ) | 
						
							| 55 | 54 | adantr | ⊢ ( ( ( ( 𝑊  prefix  ( 𝑁  +  1 ) )  =  𝑦  ∧  ( 𝑦 ‘ 0 )  =  𝑃 )  ∧  ( 𝑁  ∈  ℕ0  ∧  𝑊  ∈  ( ( 𝑁  +  1 )  WWalksN  𝐺 ) ) )  →  ( 𝑦 ‘ 0 )  =  𝑃 ) | 
						
							| 56 | 50 53 55 | 3eqtrd | ⊢ ( ( ( ( 𝑊  prefix  ( 𝑁  +  1 ) )  =  𝑦  ∧  ( 𝑦 ‘ 0 )  =  𝑃 )  ∧  ( 𝑁  ∈  ℕ0  ∧  𝑊  ∈  ( ( 𝑁  +  1 )  WWalksN  𝐺 ) ) )  →  ( 𝑊 ‘ 0 )  =  𝑃 ) | 
						
							| 57 | 56 | ex | ⊢ ( ( ( 𝑊  prefix  ( 𝑁  +  1 ) )  =  𝑦  ∧  ( 𝑦 ‘ 0 )  =  𝑃 )  →  ( ( 𝑁  ∈  ℕ0  ∧  𝑊  ∈  ( ( 𝑁  +  1 )  WWalksN  𝐺 ) )  →  ( 𝑊 ‘ 0 )  =  𝑃 ) ) | 
						
							| 58 | 57 | 3adant3 | ⊢ ( ( ( 𝑊  prefix  ( 𝑁  +  1 ) )  =  𝑦  ∧  ( 𝑦 ‘ 0 )  =  𝑃  ∧  { ( lastS ‘ 𝑦 ) ,  ( lastS ‘ 𝑊 ) }  ∈  𝐸 )  →  ( ( 𝑁  ∈  ℕ0  ∧  𝑊  ∈  ( ( 𝑁  +  1 )  WWalksN  𝐺 ) )  →  ( 𝑊 ‘ 0 )  =  𝑃 ) ) | 
						
							| 59 | 58 | com12 | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝑊  ∈  ( ( 𝑁  +  1 )  WWalksN  𝐺 ) )  →  ( ( ( 𝑊  prefix  ( 𝑁  +  1 ) )  =  𝑦  ∧  ( 𝑦 ‘ 0 )  =  𝑃  ∧  { ( lastS ‘ 𝑦 ) ,  ( lastS ‘ 𝑊 ) }  ∈  𝐸 )  →  ( 𝑊 ‘ 0 )  =  𝑃 ) ) | 
						
							| 60 | 59 | rexlimdvw | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝑊  ∈  ( ( 𝑁  +  1 )  WWalksN  𝐺 ) )  →  ( ∃ 𝑦  ∈  ( 𝑁  WWalksN  𝐺 ) ( ( 𝑊  prefix  ( 𝑁  +  1 ) )  =  𝑦  ∧  ( 𝑦 ‘ 0 )  =  𝑃  ∧  { ( lastS ‘ 𝑦 ) ,  ( lastS ‘ 𝑊 ) }  ∈  𝐸 )  →  ( 𝑊 ‘ 0 )  =  𝑃 ) ) | 
						
							| 61 | 47 60 | impbid | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝑊  ∈  ( ( 𝑁  +  1 )  WWalksN  𝐺 ) )  →  ( ( 𝑊 ‘ 0 )  =  𝑃  ↔  ∃ 𝑦  ∈  ( 𝑁  WWalksN  𝐺 ) ( ( 𝑊  prefix  ( 𝑁  +  1 ) )  =  𝑦  ∧  ( 𝑦 ‘ 0 )  =  𝑃  ∧  { ( lastS ‘ 𝑦 ) ,  ( lastS ‘ 𝑊 ) }  ∈  𝐸 ) ) ) |